师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆初中数学教材同步冀教版八年级下册21.1 一次函数下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

八年级下册(2013年12月第1版)《21.1一次函数》教案优质课下载

2.能够画出正比例函数的图象.

3.能够判断两个变量是否能够构成正比例函数关系.

4.能够利用正比例函数解决简单的数学问题.

【过程与方法】

1.通过实例,体会建立数学模型的思想.

2.通过正比例函数图象的学习与研究,感知数形结合思想.

【情感态度与价值观】

结合描点作图,培养学生认真、细心、严谨的学习态度.

【教学重点】正比例函数的概念、图象与性质.

【教学难点】正比例函数的特征.

二、教学过程

1)、情境导入,初步认识

请学生预习、自学教材,并讨论课本“思考”的问题.

【答案】(1)l=2πr;(2)m=7.8V;(3)h=0.5n;(4)T=-2t.

观察这些解析式有什么共同特点?由学生讨论,教师总结.

一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数.

例1 已知y=(k+1)x+k-1是正比例函数,求k的值.

【分析】联想正比例函数定义可知,应用时考虑k+1≠0,k-1=0,综合可得k=1.

【教学说明】这类问题看三点:(1)自变量的最高次数为1;(2)含自变量x的系数k≠0;(3)常数项为0,三者必须同时满足.

例2 根据下列条件求函数的解析式.

(1)y与x2成正比例,且x=-2时,y=12.

(2)函数y=(k2-4)x2+(k+1)x是正比例函数.

【分析】(1)根据正比例函数的定义,可设y=kx2,再由x=-2,y=12代入求得k值;(2)注意题中要求,及式子特点,结合定义与性质考虑.

解:(1)设y=kx2(k≠0),把x=-2,y=12代入得(-2)2·k=12,∴k=3,即y=3x2.

(2)由题意得:k2-4=0,∴k=2或k=-2.

教材