1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
九年级下册(2014年10月第1版)《二次函数求实际问题中的最值》集体备课教案优质课下载
(二)? 过程与方法
通过实例的学习,培养学生尝试解决实际问题,逐步提高分析问题、解决问题的能力,培养学生用数学的意识。
(三)? 情感态度价值观
1、使学生经历克服困难的活动,在数学学习活动中获得成功的体验,建立学好数学的信心;
2、通过对解决问题过程的反思,获得解决问题的经验和获得新的思想知识的方法,从而体会熟悉活动中多动脑筋、独立思考、合作交流的重要性。
四、教学重点与难点
1、教学重点:实际问题中的二次函数最值问题。
2、教学难点:自变量有范围限制的最值问题。
二、课堂教学设计过程
(一)复习导入 以旧带新
1、二次函数的一般形式是什么?并说出它的开口方向、对称轴、顶点坐标。
2、二次函数y=-x2+4x-3的图象顶点坐标是( )?当x? ?? 时,y有最 值,是______。
3、二次函数y=x2+2x-4的图象顶点坐标是?( )?当x?? ?? 时,y有最? ?? 值,是______。
分析:由于函数的自变量的取值范围是全体实数,所以只要确定他们的图像有最高点或最低点,就可以确定函数有最大值或最小值。
设计意图:复习与本节课有关的知识,可充分调动学生思维的积极性,又为新课做好准备。
(二)创设情境,导入新课
1、试一试:
例1. 用总长度为24米的不锈钢材料制成
如图所示的外观为矩形的框架,设AB=x米
(1)BC=
(2)设矩形框架ABCD的面积为S,
用x表示S的函数表达式为S=
(3)面积S有最大值还是最小值?
这个最大值或最小值是多少?
设计意图:让学生从已学的用配方法或公式法求二次函数的最值,在教学时,可让学生充分讨论、发言,培养学生的合作探究精神,可让学生感受到成功的喜悦。