1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
《9.2.2等差数列的前n项和》教案优质课下载
(一)、教学目标
1、知识与技能:掌握等差数列的前n项和公式,能较熟练应用等差数列的前n项和公式求和。
2、过程与方法:经历公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的研究方法,学会观察、归纳、反思。
3、情感、态度与价值观:获得发现的成就感,逐步养成科学严谨的学习态度,提高代数推理的能力。
(二)、教学重点、难点
1、重点:等差数列的前n项和公式。
2、难点:获得等差数列的前n项和公式推导的思路。
三、教法学法分析
(一)、教法
教学过程分为问题呈现阶段、探索与发现阶段、应用知识阶段。
探索与发现公式推导的思路是教学的重点。如果直接介绍“倒序相加”求和,显得特别突兀。所以在教学中采用以问题驱动、层层铺垫,从特殊到一般启发学生获得公式的推导方法。
应用公式也是教学的重点。为了让学生较熟练掌握公式,可采用设计变式题的教学手段,通过“选择公式”,“变用公式”,“知三求二”三个层次来促进学生新的认知结构的形成。
(二)、学法
在教学中,让学生在问题情境中,经历知识的形成和发展,通过观察、操作、归纳、探索、交流、反思参与学习,认识和理解数学知识,学会学习,发展能力。
四、教学过程分析
(一)、教学过程设计
1、问题呈现阶段
高斯是伟大的数学家,天文家,高斯十岁时,有一次老师出了一道题目,老师说: “现在给大家出道题目:1+2+…100=?” 过了两分钟,正当大家在:1+2=3;3+3=6;4+6=10…算得不亦乐乎时,高斯站起来回答说:“1+2+3+…+100=5050。
教师问:“你是如何算出答案的?
高斯回答说:因为1+100=101;2+99=101;…50+51=101,所以101×50=5050”
这个故事告诉我们:
(1)作为数学王子的高斯从小就善于观察,敢于思考,所以他能从一些简单的事物中发现和寻找出某些规律性的东西。
(2)该故事还告诉我们求等差数列前n项和的一种很重要的思想方法,这就是下面我们要介绍的“倒序相加”法。
设计意图:(1)、源于历史,富有人文气息。
(2)、承上启下,探讨高斯算法。