师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆高中数学教材同步人教B版版必修五1.1.2 余弦定理下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

必修五《1.1.2余弦定理》最新教案优质课下载

三、设计思想

新课程的数学提倡学生动手实践,自主探索,合作交流,深刻地理解基本结论的本质,体验数学发现和创造的历程,力求对现实世界蕴涵的一些数学模式进行思考,作出判断;同时要求教师从知识的传授者向课堂的设计者、组织者、引导者、合作者转化,从课堂的执行者向实施者、探究开发者转化。本课尽力追求新课程要求,利用师生的互动合作,提高学生的数学思维能力,发展学生的数学应用意识和创新意识,深刻地体会数学思想方法及数学的应用,激发学生探究数学、应用数学知识的潜能。

四、教学目标

继续探索三角形的边长与角度间的具体量化关系、掌握余弦定理的两种表现形式,体会向量方法推导余弦定理的思想;通过实践演算运用余弦定理解决“边、角、边”及“边、边、边”问题;深化与细化方程思想,理解余弦定理的本质。通过相关教学知识的联系性,理解事物间的普遍联系性。

五、教学重点与难点

教学重点是余弦定理的发现过程及定理的应用;教学难点是用向量的数量积推导余弦定理的思路方法及余弦定理在应用求解三角形时的思路。

六、教学过程:

教学环节合作探究活动学情分析与设计意图知识

回顾三角形的正弦定理内容 EMBED Equation.3 ,主要解决哪几类问题的三角形?回顾旧知,防止遗忘创设

引入开隧道之前如何测量长度学生可能比较茫然,帮助学生分析相关内容,从多角度看待问题,用实践进行检验。提出

问题你能够有更好的具体的量化方法吗?

帮助学生从平面几何、三角函数、向量知识、坐标法等方面进行分析讨论,选择简洁的处理工具,引发学生的积极讨论。引导学生从相关知识入手,选择简洁的工具。合作探究 利用向量法推导余弦定理:

如图:设 EMBED Equation.3 ,

由三角形法则有 EMBED Equation.3

EMBED Equation.3

同理,让学生利用相同方法推导,

EMBED Equation.3 学生对向量知识可能遗忘,注意复习;在利用数量积时,角度可能出现错误,出现不同的表示形式,让学生从错误中发现问题,巩固向量知识,明确向量工具的作用。同时,让学生明确数学中的转化思想:化未知为已知。归纳概括余弦定理: EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

三角形中任何一边的平方等于其他两边的平方和减去这两边与它们夹角的余弦的积的两倍。知识归纳比较,发现特征,加强识记结构分析观察余弦定理,指明了三边长与其中一角的具体关系,并发现a与A,b与B,C与c之间的对应表述,同时发现三边长的平方在余弦定理中同时出现使学生明确对应关系,树立方程思想,解决“边、角、边”问题知识联系余弦定理的推论: EMBED Equation.3

EMBED Equation.3     EMBED Equation.3 解决“边、边、边”

问题方法应用怎样准确地解答引入中的两个问题?

怎样利用已知条件判断三角形的形状?用准确的量化关系去解决问题,用边长去判断三角形形状,勾股定理是余弦定理特例。知识应用例1:在△ABC中,已知b=60cm,c=34cm,     A=41°,求解三角形(角度精确到1°,边长精确到1cm)

例2:在△ABC中,已知a=134.6cm,b=87.8cm,c=161.7cm,解三角形(角度精确到1′)应用数学知识求解问题加强计算器的运算功能,同时,巩固好正弦定理,余弦定理知识,发现两种知识方法在解三角形中的综合应用。知识深化例3:已知△ABC中 EMBED Equation.3 求c边长

分析:(1)用正弦定理分析引导