1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
人教B版2003课标版《2.4.1抛物线的标准方程》优质课教案下载
通过“观察”、“思考”、“探究”与“合作交流”等一系列数学活动,培养学生观察、类比、分析、概括的能力以及逻辑思维的能力,使学生学会数学思考与推理,学会反思与感悟,形成良好的数学观,并进一步感受坐标法及数形结合的思想。
二、教学重点
抛物线的定义及其标准方程
三、教学难点
抛物线定义的形成过程及抛物线标准方程的推导(关键是坐标系方案的选择)
四、教学过程
(一)讲授新课
1.课题引入
在实际生活中,我们也有许多的抛物线模型,观察下列图片显示的课间活动、建筑物和日常用品,到底什么样的曲线才可以称做是抛物线?它具有怎样的几何特征?它的方程是什么呢?
这就是我们今天要研究的内容.(板书:课题§2.4.1 抛物线的标准方程)
2.抛物线的定义
信息技术应用(课堂中展示画图过程)
先看一个实验:
如图:点F是定点, 是不经过点F的定直线,H是 上任意一点,过点H作 ,线段FH的垂直平分线 交MH于点M。拖动点H,观察点M的轨迹,你能发现点M满足的几何条件吗?(学生观察画图过程,并讨论)
可以发现,点M随着H运动的过程中,始终有|MH|=|MF|,即点M与定点F和定直线 的距离相等。(也可以用几何画板度量|MH|,|MF|的值)
(定义引入):
我们把平面内与一个定点F和一条定直线 ( 不经过点F)距离相等的点的轨迹叫做抛物线,点F叫做抛物线的焦点,直线 叫做抛物线的准线.(板书)
思考?若F在 上呢?(学生思考、讨论、画图)
此时退化为过F点且与直线 垂直的一条直线.
3.抛物线的标准方程
从抛物线的定义中我们知道,抛物线上的点 满足到焦点F的距离与到准线 的距离相等。那么动点 的轨迹方程是什么,即抛物线的方程是什么呢?
要求抛物线的方程,必须先建立直角坐标系.
问题 :设焦点F到准线 EMBED Equation.3 的距离为p,你认为应该如何选择坐标系求抛物线的方程?按照你建立直角坐标系的方案,求抛物线的方程.
(引导学生分组讨论,回答,并不断补充常见的几种建系方法,叫学生应用投影仪展示计算结果)
注意:1.标准方程必须出来,此表格在黑板上板书。