1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
《最小二乘估计》精品教案优质课下载
教学过程
回顾:上节课我们讨论了相关性:相关和不相关,其中相关又包括线性相关和非线性相关。
问题1、用什么样的线性关系刻画会更好一些?(学生讨论)
想法:保证这条直线与所有点都近(也就是距离最小)。
最小二乘法就是基于这种想法。
问题2、用什么样的方法刻画点与直线的
距离会方便有效?
设直线方程为y=a+bx,样本点
A(xi,yi)。
方法一:点到直线的距离公式
方法二:
显然方法二能有效地表示点A与直线y=a+bx的距离,而且比方法一更方便计算,所以我们用它来表示二者之间的接近程度。
问题3、怎样刻画多个点与直线的接近程度?
例如有5个样本点,其坐标分别为(x1,y1),(x2,y2),(x3,y3),(x4,y4),(x5,y5)与直线y=a+bx的接近程度:
从而我们可以推广到n个样本点:(x1,y1),(x2,y2),…(xn,yn)与直线y=a+bx的接近程度:
使得上式达到最小值的直线y=a+bx就是我们所要求的直线,这种方法称为最小二乘法
问题4、怎样使 达到最小值?
先来讨论3个样本点的情况(学生自主学习和了解)
设有3个点(x1,y1),(x2,y2),(x3,y3),则由最小二乘法可知直线y=a+bx与这3个点的接近程度由下面表达式刻画:
…………………①
整理成为关于a的一元二次函数 ,如下所示:
利用配方法可得