1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
北师大2003课标版《2.2建立概率模型》公开课教案优质课下载
2.通过学习建立概率模型,培养学生的应用能力.
重点难点
教学重点:建立古典概型.
教学难点:建立古典概型.
课时安排 1课时
教学过程
导入新课
思路1.
计算事件发生概率的大小时,要建立概率模型,把什么看成一个基本事件是人为规定的.今天我们学习如何建立概率模型,教师点出课题.
思路2.
解决实际应用问题时,要转化为数学问题来解决,即建立数学模型,这是高中数学的重点内容之一,也是高考的必考内容,同样解决概率问题也要建立概率模型,教师点出课题.
推进新课
新知探究 提出问题
1.回顾解应用题的步骤?
2.什么样的概率属于古典概型?
讨论结果:1.解应用题的一般程序:
(1)读:阅读理解文字表达的题意,分清条件和结论,理顺数量关系,这一关是基础.
(2)建:将文字语言转化为数学语言,利用数学知识,建立相应的数学模型.熟悉基本数学模型,正确进行建“模”是关键的一关.
(3)解:求解数学模型,得到数学结论.一要充分注意数学模型中元素的实际意义,更要注意巧思妙作,优化过程.
(4)答:将数学结论还原给实际问题的结果.
3.同时满足以下两个条件的概率属于古典概型:
(1)试验的所有基本事件只有有限个,每次试验只出现其中一个基本事件;
(2)每一次试验中,每个基本事件出现的可能性相等.
4. 下面再给出一种更为简单的解法. 解法四:只考虑第二个人摸出的球的情况,他可能摸到这4个球中的任何一个,这4种结果出现的可能性是相同的.第二个人摸到白球的结果有2种,因此 “第二个人摸到白球”的概率P(A)=2
4=1