师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆高中数学教材同步北师大版必修42.1两角差的余弦函数下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

《2.1两角差的余弦函数》教案优质课下载

在本节课两角差的余弦函数探究过程中,培养学生的观察、归纳推理以及抽象概括能力,本节课的学习证明过程中可以巩固同学们前面所学的向量知识及三角函数知识,提高同学们的知识运用和辩证推理能力,让学生感知从感性到理性的认知过程,有助于增强学生的数学应用意识。

基于以上分析,确定本节课的教学重点是引导学生通过观察、归纳、并证明两角差的余弦公式,为后续的恒等变换的学习打好基础。

学情分析

学生通过对必修4第1章和第2章的学习,掌握了三角函数和向量的基础知识,同时在初中学生就对特殊胶的三角函数值记忆深刻,这些为学生实施自主性学习提供了知识保障,加之我所教班级学生数学基础较好,对数学课有浓厚的兴趣,具备自主探索的能力,为学生自主学习提供展示自我的平台.。同时本节课公式在证明是数形结合比较能吸引学生注意力,其次三角函数主要是一些记忆性的知识,学生们对于本章内容还是比较喜欢的,学习上相应的也会更认真。

三、教学目标

1.知识与技能:使学生理解两角和与差的余弦公式的推导,并能初步应用它们进行简单的三角函数式的求值。

2.过程与方法:经历用向量的数量积推导两角差的余弦公式的过程,体验数学发现和创造的过程,体会向量和三角函数间的联系,感受特殊到一般和数形结合的思想;在余弦和角公式和诱导公式的推导过程中体会角的代换思想。

3.情感态度与价值观:使学生学会从已有知识出发主动探索未知世界的意识及对待新知识的探索乐趣,激发学生对数学学习的良好情感态度。

四、教学重点、难点

教学重点:两角和与差的余弦公式的推导及应用

教学难点:两角和与差的余弦公式的推导

设计意图:由于“两角和与差的余弦公式的推导及应用”对后几节内容能否掌握具有决定性的意义,因此它是本节课的一个重点。由于“两角差的余弦公式的推导”需要构造向量来解决,所以它是本节课的一个难点。

对于公式的结构特点学生易于混淆,采用“七字”简记法,将公式结构分析,并简单正用逆用。

五、教学方法:

本课时授课对象是对探索未知世界有主动意识,对新知识充满探求渴望的高一学生,他们已经掌握了任意角的三角函数和向量的相关知识,但独立地利用向量的方法来推导公式存在困难。根据学生已有的知识储备和心理特征,确定学法为:引导探究、小组讨论、合作交流。

本节主要是采用由问题导入,引发学生探索进取的兴趣入手,由特殊例子到一般归纳,将数形结合的思路贯穿到公式证明中去,由代数的精密推导和几何的直观性,推导 出两角差的余弦,使学生养成数形结合的习惯;另外,整体上是由特殊到一般,再由一般回归特殊应用的辩证 唯物思想的方法,这样学生易接受。

六、教学过程

(一)创设问题,课题引入

由教师提出学习的课题:前面我们学习了单角的三角函数,在研究三角函数时 还常常遇到这样的问题:“已知任意角α、β的三角函数值,求α+β、α-β的三角

函数值” ,今天我们就来研究这个问题.(板书课题)比如 =?

设计意图:明确所要研究的问题,尽量具体化,激发学生研究的兴趣. 通过问题引导学生的思考方向,为本节课的解决做铺垫.

(二)观察探索,形成公式

问题1:

问题2:利用特殊角的三角函数值类比公式

类比推理:

教材