1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
必修4《同角三角函数的基本关系》新课标教案优质课下载
已知任意角的正弦、余弦、正切中的一个值便可以运用基本关系式求出另外的两个,这是同角三角函数关系式的一个最基本功能,在求值时,根据已知的三角函数值,确定角的终边的位置是关键和必要的,有时由于角的终边的位置不确定,因此解的情况不止一种,解题时产生遗漏的主要原因一是没有确定好或不去确定终边的位置;二是利用平方关系开方时,漏掉了负的平方根.
三维目标
1.通过三角函数的定义导出同角三角函数基本关系式,并能运用同角三角函数的基本关系式进行三角函数的化简与证明.
2.同角三角函数的基本关系式主要有三个方面的应用:(1)求值(知一求二);(2)化简三角函数式;(3)证明三角恒等式.通过本节的学习,学生应明了如何进行三角函数式的化简与三角恒等式的证明.
3.通过同角三角函数关系的应用使学生养成探究、分析的习惯,提高三角恒等变形的能力,树立转化与化归的思想方法.
重点难点
教学重点:课本的三个公式的推导及应用.
教学难点:课本的三个公式的推导及应用.
教学过程
导入新课
思路1.先请学生回忆任意角的三角函数定义,然后引导学生先计算后观察以下各题的结果,并鼓励学生大胆进行猜想,教师点拨学生能否用定义给予证明,由此展开新课.计算下列各式的值:
(1)sin290°+cos290°;(2)sin230°+cos230°;(3) ;(4) .
思路2.(直接引入)同角三角函数的基本关系式是进行三角变换的重要基础之一,它们在化简三角函数式和证明三角恒等式等问题中经常用到,那么怎样把初中学到的那两个关系推广到任意角呢?可引导学生利用三角函数定义,借助单位圆将锐角推广到任意角,由此展开新课.
推进新课
新知探究
提出问题
①在以下两个等式中的角是否都可以是任意角?若不能,角α应受什么影响?
图1
如图1,以正弦线MP、余弦线OM和半径OP三者的长构成直角三角形,而且OP=1.
由勾股定理有OM2+MP2=1.
因此x2+y2=1,即sin2α+cos2α=1(等式1).
显然,当α的终边与坐标轴重合时,这个公式也成立.
根据三角函数的定义,当α≠kπ+ ,k∈Z时,有 =tanα(等式2).
这就是说,同一个角α的正弦、余弦的平方和等于1,商等于角α的正切,我们分别称它们为平方关系和商数关系.
②对于同一个角的正弦、余弦、正切,至少应知道其中的几个值才能利用基本关系式求出其他的三角函数的值.