师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆高中数学教材同步北师大版必修4弧度制下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

《弧度制》集体备课教案优质课下载

三维目标

1.通过类比长度、重量的不同度量制,使学生体会一个量可以用不同的单位制来度量,从而引出弧度制.

2.通过探究使学生认识到角度制和弧度制都是度量角的制度,通过总结引入弧度制的好处,学会归纳整理并认识到任何新知识的学习,都会为解决实际问题带来方便,从而激发学生的学习兴趣.

重点难点

教学重点:理解弧度制的意义,并能进行角度和弧度的换算.

教学难点:弧度的概念及其与角度的关系.

课时安排

1课时

教学过程

(一)温故知新

在初中几何里我们学过角的度量,当时是用度做单位来度量角的.我们把周角的 EMBED Equations 规定为1度的角,而把这种用度作单位来度量角的单位制叫做角度制.但在数学和其他科学中我们还经常用到另一种度量角的单位制——弧度制。下面我们就来学习弧度制的有关概念.(板书课题)弧度制的单位是rad,读作弧度.

(二)、探究新知

1.1弧度的角的定义.(板书)我们把长度等于半径长的弧所对的圆心角,叫做1弧度的角(打开课件).如图1—14(见教材),弧AB的长等于半径r,则弧AB所对的圆心角就是1弧度的角,弧度的单位记作rad。

在图1(课件)中,圆心角∠AOC所对的弧长l=2r,那么∠AOC的弧度数就是2rad;圆心角∠AOD所对的弧长l= EMBED Equations r,那么∠AOC的弧度数就是 EMBED Equations rad;圆心角∠AOE所对的弧长为l,那么∠AOE的弧度数是多少呢?学生思考并交流,此我们可以得到弧度制的定义.

2.弧度制的定义: 一般地,(板书)正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是o;角α的弧度数的绝对值|α|= EMBED Equations ,其中l是以角α作为圆心角时所对弧的长,r是圆的半径,这种以弧度作为单位来度量角的单位制,叫做弧度制.

在弧度制的定义中,我们是用弧长与其半径的比值来反映弧所对的圆心角的大小的.为什么可以用这个比值来度量角的大小呢?这个比值与所取的圆的半径大小有没有关系?请同学们自主学习课本P12—P13,从课本中我们可以看出,这个比值与所取的半径大小无关,只与角的大小有关。有兴趣的同学们可以对它进行理论上的证明:

(论证)如图1—13(见教材),设∠α为n°(n°>0)的角,圆弧AB和AlBl的长分别为l和l1,点A和Al到点O的距离(即圆的半径)分别为r(r>0)和rl(rl>0),由初中所学的弧长公式有l= EMBED Equations r,l1= EMBED Equations r1,所以 EMBED Equations = EMBED Equations = EMBED Equations ,这表明以角α为圆心角所对的弧长与其半径的比值,与所取的半径大小无关,只与角α的大小有关.

用角度制和弧度制来度量零角,单位不同,但量数相同(都是0);用角度制和弧度制度量任一非零角,单位不同,量数也不同.但它们既然是表示同一个角,那这二者之间就应该可以进行换算,下面我们来讨论角度与弧度的换算.

3.角度制与弧度制的换算.

现在我们知道:1个周角=360°= EMBED Equations r,所以,(板书)360°=2πrad,由此可以得到

180°=πrad,1°= EMBED Equations ≈0.01745rad,1rad=( EMBED Equations )°≈57.30°=57°18’。

说明:在进行角度与弧度的换算时,关键要抓住180°=πrad这一关系式.

今后我们用弧度制表示角时,“弧度”二字或“rad”通常略去不写,而只写这个角所对应的弧度数.例如,角α=2就表示是2rad的角,sin EMBED Equations 就表示 EMBED Equations rad的角的正弦,但用角度制表示角时,“度”或“°”不能省去.而且用“弧度”为单位度量角时,常把弧度数写成多少π的形式,如无特别要求,不必把π写成小数,如45°= EMBED Equations rad ,不必写成45°=0.785弧度.

前面我们介绍了角度制下的终边相同角的表示方法,而角度制与弧度制可以相互转化,所以与角α终边相同的角(连同角α在内),也可以用弧度制来表示.但书写时要注意前后两项所采用的单位制必须一致.

角的概念推广后,无论用角度制还是用弧度制,都能在角的集合与实数集R之间建立一种一一对应的关系:每一个角都有唯一的一个实数与它对应,例如这个角的弧度数或度数;反过来,每一个实数也都有唯一的一个角与它对应,就是弧度数或度数等于这个实数的角。

教材