师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆高中数学教材同步北师大版必修4弧度制下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

《弧度制》最新教案优质课下载

(3)熟练进行角度与弧度的换算;

(4)理解角的集合与实数集R之间的一一对应关系;

(5)理解并掌握弧度制下的弧长公式、扇形面积公式,并能灵活运用这两个公式解题。

2、过程与方法:

通过单位圆中的圆心角引入弧度的概念;比较两种度量角的方法探究角度制与弧度制之间的互化;应用在特殊角的角度制与弧度制的互化,帮助学生理解掌握;以针对性的例题和习题使学生掌握弧长公式和扇形的面积公式;通过自主学习和合作学习,树立学生正确的学习态度。

3、情感态度与价值观:

通过弧度制的学习,使学生认识到角度制与弧度制都是度量角制度,二者虽单位不同,但却是相互联系、辩证统一的;在弧度制下,角的加、减运算可以像十进制一样进行,而不需要进行角度制与十进制之间的互化,化简了六十进制给角的加、减运算带来的诸多不便,体现了弧度制的简捷美;通过弧度制与角度制的比较,使学生认识到引入弧度制的优越性,激发学生的学习兴趣和求知欲望,养成良好的学习品质。

二、教学重、难点

重点: 理解弧度制的意义,正确进行弧度与角度的换算;弧长和面积公式及应用。

难点: 弧度的概念及与角度的关系;角的集合与实数之间的一一对应关系。

三、学法与教法

在初中,我们非常熟悉角度制表示角,但在进行角的运算时,运用六十进制出现了很不习惯的问题,与我们常用的十进制不一样,正因为这样,所以有必要引入弧度制;在学习中,通过自主学习的形式,让学生感受弧度制的优越性,在类比中理解掌握弧度制。教法:探究讨论法。

四、教学过程

(一)、创设情境,揭示课题

在初中几何里我们学过角的度量,当时是用度做单位来度量角的.我们把周角的 规定为1度的角,而把这种用度作单位来度量角的单位制叫做角度制.但在数学和其他科学中我们还经常用到另一种度量角的单位制——弧度制。下面我们就来学习弧度制的有关概念.(板书课题)弧度制的单位是rad,读作弧度.

(二)、探究新知

1.1弧度的角的定义.(板书)我们把长度等于半径长的弧所对的圆心角,叫做1弧度的角(打开课件).如图1—12(见教材),弧AB的长等于半径r,则弧AB所对的圆心角就是1弧度的角,弧度的单位记作rad。

在图1(课件)中,圆心角∠AOC所对的弧长l=2r,那么∠AOC的弧度数就是2rad;圆心角∠AOD所对的弧长l= r,那么∠AOC的弧度数就是 rad;圆心角∠AOE所对的弧长为l,那么∠AOE的弧度数是多少呢?学生思考并交流,此我们可以得到弧度制的定义.

2.弧度制的定义: 一般地,(板书)正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是o;角α的弧度数的绝对值|α|= ,其中l是以角α作为圆心角时所对弧的长,r是圆的半径,这种以弧度作为单位来度量角的单位制,叫做弧度制.

在弧度制的定义中,我们是用弧长与其半径的比值来反映弧所对的圆心角的大小的.为什么可以用这个比值来度量角的大小呢?这个比值与所取的圆的半径大小有没有关系?请同学们自主学习课本P9—P10,从课本中我们可以看出,这个比值与所取的半径大小无关,只与角的大小有关。有兴趣的同学们可以对它进行理论上的证明:

(论证)如图1—13(见教材),设∠α为n°(n°>0)的角,圆弧AB和AlBl的长分别为l和l1,点A和Al到点O的距离(即圆的半径)分别为r(r>0)和rl(rl>0),由初中所学的弧长公式有l= r,l1= r1,所以 = = ,这表明以角α为圆心角所对的弧长与其半径的比值,与所取的半径大小无关,只与角α的大小有关.

用角度制和弧度制来度量零角,单位不同,但量数相同(都是0);用角度制和弧度制度量任一非零角,单位不同,量数也不同.但它们既然是表示同一个角,那这二者之间就应该可以进行换算,下面我们来讨论角度与弧度的换算.

3.角度制与弧度制的换算.

现在我们知道:1个周角=360°= r,所以,(板书)360°=2πrad,由此可以得到180°=πrad,1°= ≈0.01745rad,1rad=( )°≈57.30°=57°18’。

说明:在进行角度与弧度的换算时,关键要抓住180°=πrad这一关系式.

教材