1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
《5.3正弦函数的性质》新课标教案优质课下载
初中所学的正弦函数,是通过直角三角形中给出定义的;由于我们已将角推广到任意角的情况,而且一般都是把角放在平面直角坐标系中,这样一来,我们就在直角坐标系中来找直角三角形,从而引出单位圆;利用单位圆的独特性,是高中数学中的一种重要方法,在第二节课的正弦函数图像,以及在后面的正弦函数的性质中都有直接的应用;讲解例题,总结方法,巩固练习。
情感态度与价值观
通过本节的学习,使同学们对正弦函数的概念有了一个新的认识;在由锐角的正弦函数推广到任意角的正弦函数的过程中,体会特殊与一般的关系,形成一种辩证统一的思想;通过单位圆的学习,建立数形结合的思想,激发学习的学习积极性;培养学生分析问题、解决问题的能力。
二、教学重、难点
重点: 1.任意角的正弦函数定义,以及正弦函数值的几何表示。
2.正弦函数图像的画法。
难点: 1.正弦函数值的几何表示。
2.利用正弦线画出y=sinx,x∈[0, 2π]的图像。
三、学法与教学用具
在初中,我们知道直角三角形中锐角的对边比上斜边就叫着这个角的正弦,当把锐角放在直角坐标系中时,角的终边与单位圆交于一点,正弦函数对应于该点的纵坐标,当是任意角时,通过函数定义的形式引出正弦函数的定义;作正弦函数y=sinx图像时,在正弦函数定义的基础上,通过平移正弦线得出其图像,再归结为五点作图法。
教学用具:投影机、三角板
第一课时 §4.1 锐角的正弦函数 §4.2 任意角的正弦函数
一、教学思路
【创设情境,揭示课题】
我们学习角的概念的推广和弧度制,就是为了学习三角函数。请同学们回忆(1)角的概念的推广及弧度制、象限角等概念;(2)初中所学的正弦函数是如何定义的?并想一想它有哪些性质?学生思考回答以后,教师小结。(板书课题)
【探究新知】
在初中,我们学习了锐角α的正弦函数值:sinα= ,
如图:sinA= ,由于a是直角边,c是斜边,所sinA∈(0,1)。由于我们通常都是将
角放到平面直角坐标系中,我们来看看会发生什么?
在直角坐标系中,(如图所示),设角α(α∈(0, ))
的终边与半经为r的圆交于点P(a,b),则角α的正弦值是:
sinα= .根据相似三角形的知识可知,对于确定的角α, 都不会随圆的半经的改变而改变。为简单起见,令r=1(即为单位圆),那么sinα=b,也就是说,若角α的终边与单位圆相交于P,则点P的纵坐标b就是角α的正弦函数。
直角三角形显然不能包含所有的角,那么,我们可以仿照锐角正弦函数的定义.你认为该如何定义任意角的正弦函数?
一般地,在直角坐标系中(如上图),对任意角α,它的终边与单位圆交于点P(a,b),我们可以唯一确定点P(a,b)的纵坐标b,所以P点的纵坐标b是角α的函数,称为正弦函数,记作y=sinα(α∈R)。通常我们用x,y分别表示自变量与因变量,将正弦函数表示为y=sinx.
正弦函数值有时也叫正弦值.