1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
北师大2003课标版《4.2平面向量线性运算的坐标表示》精品教案优质课下载
(3)理解用坐标表示的平面向量共线的条件.
2.过程与方法
教材利用正交分解引出向量的坐标,在此基础上得到平面向量线性运算的坐标表示及向量平行的坐标表示;最后通过讲解例题,巩固知识结论,培养学生应用能力.
3.情感态度价值观
通过本节内容的学习,使同学们对认识到在全体有序实数对与坐标平面内的所有向量之间可以建立一一对应关系(即点或向量都可以看作有序实数对的直观形象);让学生领悟到数形结合的思想;培养学生勇于创新的精神.
投影机.二.教学重、难点
重点: 平面向量线性运算的坐标表示及向量平行的坐标表示.
难点: 平面向量线性运算的坐标表示及向量平行的坐标表示.
三.学法与教学用具
学法:(1)自主性学习+探究式学习法:
(2)反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距.
教学用具:电脑、
四.教学设想
【创设情境】
(回忆)平面向量的基本定理(基底) =λ1 +λ2
其实质:同一平面内任一向量都可以表示为两个不共线向量的线性组合.
【探究新知】
(一)、平面向量的坐标表示
1.在坐标系下,平面上任何一点都可用一对实数(坐标)来表示
思考:在坐标系下,向量是否可以用坐标来表示呢?
取 轴、 轴上两个单位向量 , 作基底,则平面内作一向量
记作: =(x, y) 称作向量 的坐标
如: = = =(2, 2) = = =(2, (1)
= = =(1, (5) =(1, 0) =(0, 1) =(0, 0)
由以上例子让学生讨论: