师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆高中数学教材同步北师大版必修51.1正弦定理下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

北师大2003课标版《1.1正弦定理》公开课教案优质课下载

重点:正弦定理的探索和证明及其基本应用。

难点:正弦定理的推导即理解

(三)学法与教学用具

学法:引导学生首先从直角三角形中揭示边角关系: ,接着就一般斜三角形进行探索,发现也有这一关系;分别利用传统证法和向量证法对正弦定理进行推导,让学生发现向量知识的简捷,新颖。

教学用具:直尺、投影仪、计算器

(四)教学过程

1[创设情景]

如图1.1-1,固定 ABC的边CB及 B,使边AC绕着顶点C转动。 A

思考: C的大小与它的对边AB的长度之间有怎样的数量关系?

显然,边AB的长度随着其对角 C的大小的增大而增大。能否

用一个等式把这种关系精确地表示出来? C B

2[探索研究] (图1.1-1)

在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在Rt ABC中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有 , ,又 , A

则 b c

从而在直角三角形ABC中, C a B

(图1.1-2)

思考:那么对于任意的三角形,以上关系式是否仍然成立?

(由学生讨论、分析)

可分为锐角三角形和钝角三角形两种情况:

如图1.1-3,当 ABC是锐角三角形时,设边AB上的高是CD,根据任意角三角函数的定义,有CD= ,则 , C

同理可得 , b a

从而 A c B

(图1.1-3)

思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。

(证法二):向量法