1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
选修1-1《2.3充要条件》优质课教案下载
(4)在充要条件的教学中,培养等价转化思想.
教学重点难点:关于充要条件的判断与应用
教学过程设计
1.复习引入
练习:判断下列命题是真命题还是假命题(用幻灯投影):
(1)若 ,则 ;
(2)若 ,则 ;
(3)全等三角形的面积相等;
(4)对角线互相垂直的四边形是菱形;
(5)若 ,则 ;
(6)若方程 有两个不等的实数解,则 .
(学生口答,教师板书.)
(1)、(3)、(6)是真命题,(2)、(4)、(5)是假命题.
置疑:对于命题“若 ,则 ”,有时是真命题,有时是假命题.如何判断其真假的?
答:看 能不能推出 ,如果 能推出 ,则原命题是真命题,否则就是假命题.
对于命题“若 ,则 ”,如果由 经过推理能推出 ,也就是说,如果 成立,那么 一定成立.换句话说,只要有条件 就能充分地保证结论 的成立,这时我们称条件 是 成立的充分条件,记作 .
2.讲授新课
(板书充分条件的定义.)
一般地,如果已知 ,那么我们就说 是 成立的充分条件.
提问:请用充分条件来叙述上述(1)、(3)、(6)的条件与结论之间的关系.
(学生口答)在下列各题中 ,分析p是q的什么条件:((((((((((((((((((((((((((((((((((((((((((((
EMBED Excel.Sheet.8 从另一个角度看,如果 成立,那么其逆否命题p也成立,即如果没有 ,也就没有 ,亦即 是 成立的必须要有的条件,也就是必要条件.
总结:如果 是 的充分条件, 又是 的必要条件,则称 是 的充分必要条件,简称充要条件,记作 .
(板书充要条件的定义.)
3.