1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
选修1-1《2.1抛物线及其标准方程》教案优质课下载
2、学情分析
此前学生学习了椭圆的定义、方程和几何性质,已经总结了一些研究圆锥曲线的方法和经验,这为学习抛物线奠定了基础。事实上,圆锥曲线系统地开启了高中解析几何的学习,让学生真正体会到用代数方法研究几何图形的科学之处。在学习的过程中,要重点培养学生自主学习和研究的能力,当然同学们也会出现计算能力欠佳等阻力,此时需要老师加以引导和辅助,以减少畏难情绪。
二.教学目标??
1、通过动手画抛物线,掌握抛物线的定义。
2、 让学生自己经历推导标准方程的过程,掌握抛物线的四种标准方程形式,及其对应的焦点、准线。
3、通过观察图像,培养学生观察、类比、分析、概括的能力以及逻辑思维的能力,并进一步感受数形结合这一重要的数学思想。
三.教学重难点
教学重点:抛物线的定义及标准方程
教学难点:引导学生观察图像概括出抛物线定义及推导出标准方程。
四.教学过程
(一)复习旧知
在初中,我们学习过了二次函数y=ax2+bx+c,知道二次函数的图象是一条抛物线,例如:(1)y=4x2,(2)y=-4x2的图象(展示两个函数图象):
并让学生思考抛物线的开口方向、顶点坐标和对称轴.
(二)讲授新课
1.课题引入
通过演示课前老师准备的有关图片(PPT),让同学们思考它们是什么曲线?再思考到底什么样的曲线才可以称作是抛物线?它具有怎样的几何特征?它的方程是什么呢?
这就是我们今天要研究的内容.
2.抛物线的定义
本节信息技术应用(课堂中用几何画板展示画图过程)
先看一个实验:
如图:点F是定点,l是不经过点F的定直线,H是l上任意一点,过点H作MH⊥l,线段FH的垂直平分线m交MH于点M.拖动点H,观察点M的轨迹,你能发现点M满足的几何条件吗?(学生观察画图过程,并讨论)
可以发现,点M随着H的运动,始终有|MH|=|MF|,即点M与定点F和定直线l的距离相等.(也可以用几何画板度量|MH|,|MF|的值)
(定义引入):