1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
《2.2导数的几何意义》最新教案优质课下载
教学重点:曲线的切线的概念、切线高考资源网的斜率、导数的几何意义;
教学难点:导数的几何意义.
教学过程:
一.复习回顾
(一)平均变化率: 割线PQ的斜率:
(二)导数的定义:函数y=f(x)在x=x0处的瞬时变化率是:
我们称它为函数 在 出的导数,记作 或
导数的公式表达式:
我们知道,导数表示函数y=f(x)在x=x0处的瞬时变化率,导数 的几何意义是什么呢?
二.新课讲授
(一)曲线的切线及切线的斜率:请在函数 像中过P点做出4条割线PQ,当
PQ沿着曲线 趋近于点 时:
思考:割线PQ的变化趋势是什么?割线斜率的表达式是什么?,当点Q沿着曲线无限接近点P即Δx→0时,最后得到的PQ是曲线的什么线?该线斜率的表达式是什么?体现什么数学思想?
]
P
我们发现,当点Q沿着曲线无限接近点P即Δx→0时,割线PQ趋近于确定的位置,这个确定位置的直线PT称为曲线在点P处的切线.
容易知道,割线PQ的斜率是 ,当点Q沿着曲线无限接近点P时, 无限趋近于切线PT的斜率 ,即
说明:(1)提供求曲线上某点切线的斜率的方法②切线斜率的本质—函数在 处的导数.
(2)曲线在某点处的切线:1)与该点的位置有关;2)要根据割线是否有极限位置来判断与 求解.如有极限,则在此点有切线,且切线是唯一的;如不存在,则在此点处无切线;3)曲线的切线,并不一定与曲线只有一个交点,可以有多个,甚至可以无穷多个.
(二)导数的几何意义:
函数y=f(x)在x=x0处的导数等于在该点 处的切线的斜率,