1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
北师大2003课标版《2.1复数的加法与减法》优质课教案下载
教学难点:复数加法运算的运算率。教学过程备课札记讲解新课:
1.复数z1与z2的和的定义:z1+z2=(a+bi)+(c+di)=(a+c)+(b+d)i.
2. 复数z1与z2的差的定义:z1-z2=(a+bi)-(c+di)=(a-c)+(b-d)i.
3. 复数的加法运算满足交换律: z1+z2=z2+z1.
证明:设z1=a1+b1i,z2=a2+b2i(a1,b1,a2,b2∈R).
∵z1+z2=(a1+b1i)+(a2+b2i)=(a1+a2)+(b1+b2)i.
z2+z1=(a2+b2i)+(a1+b1i)=(a2+a1)+(b2+b1)i.
又∵a1+a2=a2+a1,b1+b2=b2+b1.
∴z1+z2=z2+z1.即复数的加法运算满足交换律.
4. 复数的加法运算满足结合律: (z1+z2)+z3=z1+(z2+z3)
讲解范例:
例1计算:(1-3i)-(2+5i)+(-4+9i)
例2计算:(1-2i)+(-2+3i)+(3-4i)+(-4+5i)+…+(-2002+2003i)+(2003-2004i)
解法一:原式=(1-2+3-4+…-2002+2003)+(-2+3-4+5+…+2003-2004i)=(2003-1001)+(1001-2004)i=1002-1003i.
解法二:∵(1-2i)+(-2+3i)=-1+i, (3-4i)+(-4+5i)=-1+i,
……
(2001-2002i)+(-2002+2003)i=-1+i.
相加得(共有1001个式子):
原式=1001(-1+i)+(2003-2004i)
=(2003-1001)+(1001-2004)i=1002-1003i
4.乘法运算规则:
规定复数的乘法按照以下的法则进行:
设z1=a+bi,z2=c+di(a、b、c、d∈R)是任意两个复数,那么它们的积(a+bi)(c+di)=(ac-bd)+(bc+ad)i.
其实就是把两个复数相乘,类似两个多项式相乘,在所得的结果中把i2换成-1,并且把实部与虚部分别合并.两个复数的积仍然是一个复数.
2.乘法运算律: