1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
选修2-2《1.2函数的极值》公开课教案优质课下载
过程与方法
结合实例,借助函数图形直观感知,并探索函数的极值与导数的关系。
情感与价值
感受导数在研究函数性质中一般性和有效性,通过学习让学生体会极值是函数的局部性质,增强学生数形结合的思维意识。
二、重点:利用导数求函数的极值
难点:函数在某点取得极值的必要条件与充分条件
三、教学基本流程
回忆函数的单调性与导数的关系,与已有知识的联系
提出问题,激发求知欲
组织学生自主探索,获得函数的极值定义
通过例题和练习,深化提高对函数的极值定义的理解
四、教学过程
〈一〉、创设情景,导入新课
1、通过上节课的学习,导数和函数单调性的关系是什么?
(提问学生回答)
<二>、探索研讨
1、观察1图所表示的y=f(x)的图象,回答以下问题:
(1)函数y=f(x)在a.b点的函数值与这些点附近的函数值有什么关系?
(2) 函数y=f(x)在a.b.点的导数值是多少?
(3)在a.b点附近, y=f(x)的导数的符号分别是什么,并且有什么关系呢?
2、极值的定义:
我们把点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值;
点b叫做函数y=f(x)的极大值点,f(a)叫做函数y=f(x)的极大值。
极大值点与极小值点称为极值点, 极大值与极小值称为极值.
3、通过以上探索,你能归纳出可导函数在某点x0取得极值的充要条件吗?