1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
北师大2003课标版《6.2正态分布》精品教案优质课下载
二、教学重点、难点:
重点: 正态分布的概念、正态曲线的性质和标准正态分布的一些简单计算。
难点: 正态分布的意义和性质。
三、教学设想
导入新课
1、 问题引入:在2007年的高考中,某省全体考生的高考平均成绩是490分,标准差是80,计划本科录取率为0.4 ,则本科录取分数线可能划在多少分?
2、回顾样本的频率分布与总体分布之间的关系.
前面我们研究了离散新随机变量,他们只取有限个或可列个值,我们用分布列来描述总体的统计规律;而许多随机现象中出现的一些变量,如上节课研究的某产品的尺寸,它的取值是可以充满整个区间或者区域的,总体分布通常不易知道,我们是用什么去估计总体分布的呢?----用样本的频率分布(即频率分布直方图)去估计总体分布.
回头看上一节得出的100个产品尺寸的频率分布直方图,发现:横坐标是产品的尺寸;纵坐标是频率与组距的比值,什么才是在各组取值的频率呢?---直方图的面积。设想:当样本容量无限增大,分组的组距无限的缩小时,这个频率直方图无限接近于一条光滑的曲线-----总体密度曲线。它能够很好的反映了总体在各个范围内取值的概率。由概率的性质可以知道(1)整条曲线与x轴所夹的总面积应该是?---1(2)总体在任何一个区间内取值的概率等于这个范围内面积
下面,同学们一起观察一下总体密度曲线的形状,看它具有什么特征?
“中间高,两头低,左右对称”的特征。像具有这种特征的总体密度曲线一般就是或者近似的是以下函数的图像。(板书函数、标题):
【二】正态分布
(1)正态总体的函数解析式、正态分布与正态曲线
产品尺寸的总体密度曲线具有“中间高,两头低”的特征,像这种类型的总体密度曲线,一般就是或近似地是以下一个函数的图象:(板书)
EMBED Equation.3 ①
这个总体是具有无限容量的抽象总体,其分布叫做正态分布,其图像叫做正态曲线。
在函数解析式中有两个参数μ、σ:μ表示总体的平均数;σ(σ>0)表示总体的标准差,下面我们来研究一下这两个参数在图像上有怎样的影响呢?
1、μ表示总体的平均数(它不就是前面学习的随机变量的?---期望,而期望是反映总体分布的?---平均水平),(回头看频率分布直方图)大家思考一下,这个总体分布的平均数在什么位置呢?最高点那个位置,为什么呢?因为规定的尺寸为25.40mm,总体在它的左右取值的概率最大,尺寸过大或过小毕竟占少数,所以图像才会呈现“中间高,两头低”的特征。下面大家看一下flash (改变μ的值,肯定学生的回答,得出1、2、3条性质)
用《几何画板》画出三条正态曲线:即①μ=-1,σ=0.5;②μ=0,σ=1;③μ=1,σ=2,其图象如下图所示:
得出正态曲线的前四条性质:
①曲线在x轴的上方,与x轴不相交。
②曲线关于直线x=μ对称,且在x=μ时位于最高点。
③当x<μ时,曲线上升;当x>μ时,曲线下降。并且当曲线向左、右两边无限延伸时,以x轴为渐近线,向它无限靠近。
以上便是参数μ对正态曲线的影响
2、下面我们再分析若 μ是定值,即对称轴一定,σ决定着曲线的什么?