1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
必修1《1.2函数及其表示(通用)》新课标教案优质课下载
教学难点:二次函数在某一给定区间上的值域(最值)的求法
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
教学过程:
一、复习引入:
函数的三要素是:定义域、值域和定义域到值域的对应法则;对应法则是函数的核心(它规定了x和y之间的某种关系),定义域是函数的重要组成部分(对应法则相同而定义域不同的映射就是两个不同的函数);定义域和对应法则一经确定,值域就随之确定
函数的表示方法⑴解析法优点:一是简明、全面地概括了变量间的关系;二是可以通过解析式求出任意一个自变量的值所对应的函数值.中学阶段研究的函数主要是用解析法表示的函数.
⑵列表法优点:不需要计算就可以直接看出与自变量的值相对应的函数值.
⑶图象法:优点:能直观形象地表示出自变量的变化,相应的函数值变化的趋势,这样使得我们可以通过图象来研究函数的某些性质.
前面我们已经学习了函数定义域的求法和函数的表示法,今天我们来学习求函数值域的几种常见方法
二、讲解新课:
1.直接法:利用常见函数的值域来求
一次函数y=ax+b(a 0)的定义域为R,值域为R;
反比例函数 的定义域为{x|x 0},值域为{y|y 0};
二次函数 的定义域为R,
当a>0时,值域为{ };当a<0时,值域为{ }.
例1.求下列函数的值域
① y=3x+2(-1 x 1) ②
③ ④
解:①∵-1 x 1,∴-3 3x 3,
∴-1 3x+2 5,即-1 y 5,∴值域是[-1,5]
②∵ ∴
即函数 的值域是 { y| y 2}
③