1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
《1.3.1单调性与最大(小)值》教案优质课下载
上课时不贪图进度和难度。按照大纲要求,将概念引入、讲解、重点分析、举例巩固、课后练习。这堂课无论是自己或者学生都反映良好,概念清晰,学生在完成课后作业的时候也准确率较高。如何利用有限的课堂教学时间,使学生在准确理解“函数的单调性”的有关概念的基础上,掌握数形结合的思想方法,加深对概念的认识,为进一步的转化为程序性知识做铺垫。我利用课本的引例,即利用二次函数和三次函数的图象,让学生直观地看到“单调递增”或“单调递减”的现象,然后就单刀直入地提出了“函数的单调性”这个概念,解释一下要点“任意”、“都有”、“定义域”、“区间”,为了让学生对概念理解的更透彻,突出重点,后续学习更加顺利,我还加入了一次函数和反比例函数 。这样的安排,一方面是考虑到学生实际情况(直观现象容易为其所接受),一方面也是尽最大可能地利用课本承前启后。学生在描述上述三个函数图象的时候较为顺利,此时我引导学生观察一次函数的图象,描述其的特征:从左往右图象上升。然后顺势提出让学生观察其余两个函数的图象,是否有类似的现象。学生1:二次函数图象上升;学生2:二次函数图象下降;学生3:二次函数图象下降后上升。学生1和学生2在学生3回答后感觉自己似乎错了,但又说不请理由。此时,教师指出:在同一个观察任务中必须按照一定的标准,观察的顺序应沿x轴的正方向即“从左向右”,即可得到正确答案。学生在理解错误原因过程中亦得到了正确的研究方法。通过观察,大家发现了上述三个函数存在从左往右看图象上升或下降的现象,及时提出课题 “函数的单调性”,并指出以上函数的单调性及增减函数的名词。直观上承认这一性质以后,我放弃了以前直奔主题的做法,结合学生常常接触上下楼为情景。由学生仿照刚才的分析,解释图象的“单调”特征。继而提出:图象特征如何转化为数学语言?经过思考,通过图象直观的影响,教师的启发,学生归纳总结函数单调性的定义。到此,学生通过自身的探索终于接近目的地,自己给出了“增函数”的定义。我让学生打开书本,与书上的定义进行比较,肯定他们的成果,并提示采用书本更为精确的用语。这个定义的给出,与以往我生硬地将课本定义直接给出大相径庭,由学生容易接受的直观图象开始,先形成“单调性”是函数的一种现象、“增(减)函数”是什么样的这样的印象,由学生自主探索接近、得到定义,学生对此印象深刻,理解深入,而且激发了学生的自信心:原来自己也可以写数学定义。兴奋点启动以后,后续的学习就顺利多了,“减函数”,“单调区间”的定义很快给出,突破了难点。最后指出“函数的单调性”本质上反映了函数随自变量的变化函数值相应地发生变化的性质。这个结论的提出,在一定的高度上对“函数的单调性”作出了最本质的概括,学生通过学法指导,收到了我预期的效果。
通过函数的单调性教学,我对自己的教学作一个完整的反思。
优点:(1)、从熟悉的二次函数入手,简单复习回顾以前学过的确定函数单调性的方法,使知识学习有连贯性。(2)、由不熟悉的三次函数单调性的确定问题,使学生体会到,用定义法太麻烦,而图像又不清楚,必须寻求一个新的解决办法,产生认知冲突,认识到再次研究单调性的必要性。(3)、从简单的、熟悉的二次函数图象入手,引导学生从函数的切线斜率变化观察函数单调性的变化,再与新学的导数联系起来,形成结论。再用代数法求出导数进行验证。另外,也使学生感受到解决数学问题的一般方法:从简单到复杂,从特殊到一般,同时体会数形结合的思想方法。(4)、学生分组探讨,用导数的几何意义和代数法两种方法探讨,每组选出中心发言人,将本组讨论的结果公布出来,从而抽象概括一般性的结论。这个过程充分体现了学生的合作学习、自主学习、探究学习。
缺点:本节课对学生还放的不够开,还不能算一节高效课堂。今后的教学中,应注重高效课堂的探索和实践,老师尽可能少讲,让学生动起来,引导学生动口、动脑、参与数学活动,发挥主观能动性,主动探索新知。让学生分组讨论,合作交流,共同探讨问题。真正做到以学生为中心,学生100%参与,体现三维目标,培养学习能力。提高有效教学能力,促进学生有效学习。
通过函数的单调性教学,我从以下方面对自己的教学作一个完整的反思,以便更好的发现不足之处,及时调整,让学生更好学习。完善或改进此教学。从学生来说,这部分需要学生有严谨的论证思维,和锻炼相应的论述能力,鉴于以前没有接触过类似的知识形式,学生上课很有激情,但课堂回答问题的整体状态不佳。从作业上看,总体是很满意的,但也出现了全班的通病,那就是在证明函数单调性上出现了问题,这需要在以后的习题训练课中进行相关的加强和强调。
从课本上来说的话,课本降低了对定义域、值域的要求,尤其是人为的过于技巧性的,过于繁难的运算。函数概念的教学可以从学生在义务教育阶段已掌握的具体函数和函数的描述性定义入手,引导学生联系自己的生活经历和实际问题,尝试列举各种各样的函数,构建函数的一般概念.掌握函数的三种表示方法:列表法、图象法和解析法。
函数的单调性的教学加强了对数形结合等数学思想方法学习的要求,让学生尽量从图形上直观的认识函数的性质,然后再从理论上进行研究,这种发现问题、提出问题、研究问题的探究方式,也是新课程提出的新的教学理念的一个体现。为了给学生补充相关的知识,与考试大纲进行衔接,必须增加函数的最大值、最小值的概念。利用函数的单调性求最值也成为研究函数性质的一个必要的问题。
最后,对于复合函数的单调性:对于复合函数,课本只有在选修教材中才出现,但是函数的学习中却有很多复合函数的问题,对于复合函数的单调性,在学习幂、指、对函数及三角函数时,都出现了复合函数的单调性问题,在教学中,我们是在学习了指数函数后,结合指数函数与一次函数、二次函数的复合形式进行的讲解,而且是从函数单调性的定义入手,不涉及过于复杂的、技巧性较高的问题,这样的教学对于高一学生来说,接受的还是比较好的。通过反思使我提高了有效教学能力,促进学生更有效学习。
PAGE
PAGE 3