师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆高中数学教材同步人教A版版必修11.3.1 单调性与最大(小)值下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

《1.3.1单调性与最大(小)值》优质课教案下载

(一)学习目标

1. 能从形与数两方面理解函数单调性的概念,掌握用函数单调性的定义证明简单函数在某区间上具有某种单调性的方法(步骤).

2. 通过对函数单调性定义的探究,感悟数形结合的思想方法,培养观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高推理论证能力.

3. 通过知识的探究过程培养细心观察、认真分析、严谨论证的良好思维习惯,感知从具体到抽象,从特殊到一般,从感性到理性的认知过程.

(二)目标解析

1.能够以具体的例子说明某函数在某区间上是增函数还是减函数;能够举例,并通过绘制图形说明函数在定义域的子集(区间)上具有单调性,而在整个定义域上未必具有单调性,说明函数的单调性是函数的局部性质.对于一个简单的函数能够用单调性的定义,证明它是增函数还是减函数.

2.在探究函数单调性定义时,领悟到数形结合思想、转化思想、变化与对应思想,并能运用这些数学思想观察、分析函数的图象,探究、归纳、概括函数单调性的概念.

3.通过对函数单调性定义的探究,经历观察、分析、探究、归纳的认知过程,将函数图象的“上升”或“下降”这一特征能用该区间上“任意的,都有”的数学语言进行刻画.从函数入手归纳函数单调性定义推广到一般函数的单调性定义.培养良好的思维品质,提高思维能力.

三、学生学情分析

学生已有的认知基础是,初中学习过函数的概念,初步认识到函数是描述事物运动变化规律的数学模型,并且学习了一次函数、二次函数及反比例函数,能熟练的利用描点法画出这些函数的图象.进入高中以后又进一步学习了函数概念,认识到函数是两个非空数集间的一种对应.知道函数有三种表示方法,充分认识到一个函数中自变量与函数值的对应关系,可以利用图象表示函数中函数值随自变量的变化而变化的规律和性质.

“图象是上升的,函数是单调递增的;图象是下降的,函数是单调递减的”仅就图象角度直观描述函数单调性的特征,学生并不感到困难.困难在于,把具体的、直观形象的函数单调性特征抽象出来,用数学的符号语言描述.即把某区间上“随着的增大而增大”这一特征用该区间上“任意的,都有”进行刻画.其中最难理解的是为什么要在区间上“任意”取两个大小不等的.

教学难点:形成增(减)函数概念的过程中,如何从图象升降的直观认识过渡到函数增减的数学符号语言表述,用定义证明函数单调性。

四、教学策略分析

为实现本节课的教学目标,突出重点,突破难点,教学上我主要采取了以下的策略:

(1)创设生活情境,找准切入点.函数是描述事物运动变化规律的模型,生活中很多运动变化的现象都值得去关注,让学生通过观察定兴县某天气温变化曲线图的变化趋势,完成对单调性直观上的一种认识,并为概念的引入提供了必要性.让学生带着问题(什么是函数的单调性?怎样判定函数的单调性?)进入新课.

(2)探索概念阶段,紧扣主线.在函数图象上“谱好”函数单调性教学的“三步曲”.

①以学生熟悉的函数为例,让学生从图象上获得“上升”“下降”的整体认识,初步认识函数单调性.

②通过观察函数的对应值表格提出猜想,通过几何画板软件加以验证,用数学语言“随着的增大而增大” 来描述 “函数的图象在轴右侧是上升的”,进一步认识函数单调性.

③通过观察、猜想、分析、验证、证明的过程,从而用数学符号语言定描述函数在的单调性.最后通过类比,用数学符号语言定义一般函数的单调性.

五、教学过程

(一)创设情境,引入新知

我们知道,函数是研究事物运动变化规律的模型,生活中就有许多运动变化的现象是我们经常关注的,如某日定兴24小时的温度曲线.

问题1:观察图形,你能得到什么信息?

师生活动:教师提问,学生思考、回答,教师根据学生回答的情况加以补充.

【设计意图】通过学生熟悉的实际问题引入课题.为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性.学生通过观察定兴县某天气温变化曲线图的变化趋势,完成对单调性直观上的一种认识.

教材