1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
《小结》最新教案优质课下载
教学难点:判断函数的奇偶性的方法与格式.
教学过程:
引入课题
1.实践操作:(也可借助计算机演示)
取一张纸,在其上画出平面直角坐标系,并在第一象限任画一可作为函数图象的图形,然后按如下操作并回答相应问题:
eq ﹨o﹨ac(○,1) 以y轴为折痕将纸对折,并在纸的背面(即第二象限)画出第一象限内图形的痕迹,然后将纸展开,观察坐标系中的图形;
问题:将第一象限和第二象限的图形看成一个整体,则这个图形可否作为某个函数y=f(x)的图象,若能请说出该图象具有什么特殊的性质?函数图象上相应的点的坐标有什么特殊的关系?
答案:(1)可以作为某个函数y=f(x)的图象,并且它的图象关于y轴对称;
(2)若点(x,f(x))在函数图象上,则相应的点(-x,f(x))也在函数图象上,即函数图象上横坐标互为相反数的点,它们的纵坐标一定相等.
eq ﹨o﹨ac(○,2) 以y轴为折痕将纸对折,然后以x轴为折痕将纸对折,在纸的背面(即第三象限)画出第一象限内图形的痕迹,然后将纸展开,观察坐标系中的图形:
问题:将第一象限和第三象限的图形看成一个整体,则这个图形可否作为某个函数y=f(x)的图象,若能请说出该图象具有什么特殊的性质?函数图象上相应的点的坐标有什么特殊的关系?
答案:(1)可以作为某个函数y=f(x)的图象,并且它的图象关于原点对称;
(2)若点(x,f(x))在函数图象上,则相应的点(-x,-f(x))也在函数图象上,即函数图象上横坐标互为相反数的点,它们的纵坐标也一定互为相反数.
2.观察思考(教材P39、P40观察思考)
新课教学
(一)函数的奇偶性定义
象上面实践操作 eq ﹨o﹨ac(○,1) 中的图象关于y轴对称的函数即是偶函数,操作 eq ﹨o﹨ac(○,2) 中的图象关于原点对称的函数即是奇函数.
1.偶函数(even function)
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.
(学生活动):仿照偶函数的定义给出奇函数的定义
2.奇函数(odd function)
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数.
注意:
eq ﹨o﹨ac(○,1) 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;
eq ﹨o﹨ac(○,2) 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).