师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆高中数学教材同步人教A版版必修1探究与发现 互为反函数的两个函数图象之间的关系下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

人教A版2003课标版《探究与发现互为反函数的两个函数图象之间的关系》教案优质课下载

二、教学目标分析:

(1)知识与技能:使学生接受、理解反函数的概念,并能判定一个函数是否存在反函数;使学生能够求出指定函数的反函数,并能理解原函数和反函数之间的内在联系;

(2)能力与方法:培养学生发现问题、观察问题、解决问题的能力;

(3)情感与态度:使学生树立对立统一的辩证思维观点。

三、学情分析:

学生已经学习了函数的基本概念和表示法,掌握了函数的基本知识,理解反函数的概念及互为反函数的两个函数的性质和特征,更有助于学生将函数的思想理解得更透彻。

四、教学过程设计

1、创设问题情境:

导入阶段的教学中,抓住反函数也是函数这一实质,以对函数概念的复习来引出反函数。指明函数是一种映射的实质,分析原函数中映射的具体情况,进而引导学生考虑,若将定义域、值域互换,此时映射还是不是一个函数呢?

首先提问学生函数基本概念,使学生明白函数是一种单值对应,即映射。再出示电脑动画,以函数y=2x来具体分析,结合图象引导学生注意:在定义域内所有自变量,都能在值域内找到唯一确定的一个函数值,即存在x→y的单值对应,例如:1→2,2→4,3→6,……若将定义域与值域互换,则对应变为2→1,4→2,6→3,…这种对应是否构成单值对应,即映射呢?这种对应是否构成函数呢?至此,引出反函数的概念,为概念的新授做好准备。

设计意图:这样的引入方式,抓住了反函数概念的实质,确保学生不会产生概念上的偏差。此外,可以使学生明白新知识来源于旧知识,促使学生主动运用函数的研究方法去学习反函数,为顺利完成教学任务做好思维上的准备。

2、知识建构:

给出概念后,必须防止学生对于反函数f-1(y)形式的误解(以为是1/f(x))。此外,还要学生理解:最终的表达形式写为y=f-1(x)是顺应习惯,并且也为后面的图象研究提供方便,y实际上是原函数中的x,x是原函数中的y。对于这一问题可以引导学生从图象观察得出。

进一步深化对概念的理解,出示电脑幻灯,设置疑问:(1)反函数是不是函数;(2)反函数有没有三要素?如何确定?

引导学生思索,学生逐渐会认识到:反函数也是函数,其定义域是原函数的值域,对应法则可由原函数得到,值域则是原函数的定义域。

这时,给出电脑动画,指明反函数与原函数的关系。澄清学生对于概念的认识,抓住问题的关键。

但是,具体怎样求一个函数的反函数呢?

这些问题,必须通过实例解决,于是进入例题解答过程。

例一:求下列函数的反函数。

(1)y=3x-1(x∈R); (2)y=x3+1; (3) EMBED Equation.DSMT4

通过例1,要使学生明白具体求反函数的过程。以达到突出重点、突破难点的目的。

设计意图:通过例题,启发学生:既然反函数也存在三要素,那如何一一求出,得到具体的反函数呢?这时结合第(1)小题,让学生思考问题。引导学生找出关键 通过解关于x的方程,将x用y表达,以得到反函数的表达式。这个表达式中的x、 y表示什么?这和我们通常的函数表达式有什么区别?进而引导学生想到交换x、 y得到我们习惯使用的函数表达式。再考虑:反函数的定义域、值域怎么求?是怎样来的?学生思考后,可得出通过求原函数值域来得到反函数的定义域的方法。

此时,引导学生比较三道小题的解题步骤,师生共同小结出求反函数的三部曲:反解(把解析式看作x的方程,求出反函数的解析式)--→互换(求出所给函数的值域并把它改换成反函数的定义域)--→改写(将函数写成y=f-1(x)的形式)。

教师在这一部分教学中,抓住反函数是函数这一本质问题,突出了反函数与原函数之间的联系,给出了具体求解的过程,使学生掌握了重点问题的解决方法。教师以一个个问题来引导学生逐步“发现”解决问题的方法,符合学生的认知水平。在教师创设的问题情境中,学生的认识达到了第一次平衡。

“反函数的概念已经理解,反函数也会求了,任务已基本完成,该休息了”,有的学生会这样想。这时,出示第二道例题,打破平衡,激起学生的疑难。

相关资源

教材