1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
必修1《3.2.2函数模型的应用实例》公开课教案优质课下载
本节考纲要求①了解指数函数、对数函数以及幂函数的增长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义.②了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.
教学重点:实现实际问题转化为函数模型;然后解决实际问题,达成认知结构的形成、知识要点的梳理和知识体系的建构以及与相关知识的联系.
2.学生学情诊断
(1)学生具备的认知基础:①基本初等函数的图像和性质;②数与形相结合转化的意识;③初步体会了建立函数模型解决实际问题的过程.
(2)学生欠缺的实际能力:①数与形转化的意识还不够强;②从实际问题中抽象出数学问题的能力;③实际问题背景下解决数学问题的熟练程度不够.
(3)本节课为高三复习课.虽然教材内容为几种函数增长模型的比较与函数模型应用举例,但作为高三第一轮复习课,函数模型不一定局限于高一所学过的幂指对三种,其他章节也都出现过建立函数模型的应用问题.比如数列,不等式,三角函数,导数等.但一节课要想把所有的函数模型都复习到是不现实的.因此只能以一些典型模型为载体,复习建立函数模型解决实际问题的基本方法,让学生在问题情境中加深对建模应用问题的理解.
教学难点:对问题背景信息进行整合,建立最佳函数模型解决实际问题,然后通过分析对实际问题进行反馈.
3.教学标准设置
(1)通过实例探究,学生能将有关知识要点有机地联系在一起,能综合运用所学知识解决实际问题;(2)学生能根据实际问题建立恰当的数学模型,能应用数学建模的思想方法解决实际问题;
(3)学生会采用题中抽知的方式梳理相关知识点,能系统地列出本节内容的特点;
(4)能根据图象和表格等提供的有关信息和数据,建立函数模型,将实际问题抽象为数学问题.
4.教学策略分析
在设定教学目标后基于对教学内容和学生情况的分析,为解决问题采用了如下教学策略.
教学理念 ①倡导积极主动、勇于探索、不怕挫折的学习精神和合作探究的学习方式;②营造一个生动和谐充满人文关怀的教学氛围;③追求合作探究与数学课程有机整合的高效课堂;
教学方法设计
任务驱动教学法(自主探究、合作交流、分享评价)
(1)从教与学的现实出发,为了使得数学建模的开放性更大些,探究性更强些,设计了学生合作探究、提出建立解决问题的基本模型的方案. “课标”要求我们教师对待教材,不单单是课程的消费者和执行者,而应该是课程的策划者和设计者,我对课堂例题进行了精心设计,使得教学内容更加贴近学生,更显真实.
(2)根据教学内容的特点和对学生情况分析,从学生原有的知识基础和实际能力出发,以任务驱动、问题引导为主线,以学生探究为载体,利用主动观察、思考、动手操作、小组合作、分享评价等形式来组织教学,努力营造一个合作学习、共同探究、展示成果、愉悦学习的舞台.
(3)在教学过程中对基础较弱的同学进行指导,并请组内同学给予帮助指导.经历了整个建模过程后,给学生当堂练习的机会,及时反馈评价.并留下新的问题课后探究,让学生带着问题走进课堂,带着新的问题离开课堂.同时又给学有余力的学生提供继续学习的平台.
教学流程:
创设情境,引出课题
↓
例题解析,触类旁通
↓
归纳小结,感悟收获