师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆高中数学教材同步人教A版版必修23.2.2 直线的两点式方程下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

《3.2.2直线的两点式方程》教案优质课下载

2、过程与方法

让学生在应用旧知识的探究过程中获得到新的结论,并通过新旧知识的比较、分析、应用获得新知识的特点。

3、情态与价值观

(1)认识事物之间的普遍联系与相互转化;

(2)培养学生用联系的观点看问题。

教学重点、难点:

重点:直线方程两点式。

2、难点:两点式推导过程的理解。

教学过程:

一、复习准备:

写出下列直线的点斜式、斜截式方程,并求直线在 轴上的截距.

①经过点A(-2,3),斜率是-1;②经过点B(-3,0),斜率是0;③经过点 ,倾斜角是 ;

二、讲授新课:

1.直线两点式方程的教学:

① 探讨:已知直线 经过 (其中 )两点,如何求直线的点斜式方程?

两点式方程:由上述知, 经过 (其中 )两点的直线方程为 ⑴, 我们称⑴为直线的两点式方程,简称两点式.

若点 中有 ,或 ,此时这两点的直线方程是什么?

2.举例

例1:求过 两点的直线的两点式方程,并转化成点斜式.

练习:教材P97面1题

例2:已知直线 与 轴的交点为A(a,0),与 轴的交点为B(0,b),其中a≠0,

b≠0

求 的方程

② 当直线 不经过原点时,其方程可以化为 ⑵, 方程⑵称为直线的截距式方程,其中

直线 与 轴交于点 ,与 轴交于点 ,即 与 轴、 轴的截距分别为 .

教材