1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
必修2《习题3.3》教案优质课下载
教学重点:点到直线距离公式的推导和应用.
教学难点:对距离公式推导方法的感悟与数学模型的建立.
【课时安排】:1课时
【教学过程】
导入新课
我们已学习了两点间的距离公式,本节课我们来研究点到直线的距离.如图1,已知点P(x0,y0)和直线l:Ax+By+C=0,求点P到直线l的距离(为使结论具有一般性,我们假设A、B≠0).
图1
提出问题:
①已知点P(x0,y0)和直线l:Ax+By+C=0,求点P到直线l的距离.你最容易想到的方法是什么?各种做法的优缺点是什么?
②前面我们是在A、B均不为零的假设下推导出公式的,若A、B中有一个为零,公式是否仍然成立?
③回顾前面证法一的证明过程,同学们还有什么发现吗?(如何求两条平行线间的距离)
活动:
①请学生观察上面三种特殊情形中的结论:
(ⅰ)x0=0,y0=0时,d= ;(ⅱ)x0≠0,y0=0时,d= ;
(ⅲ)x0=0,y0≠0时,d= .
观察、类比上面三个公式,能否猜想:对任意的点P(x0,y0),d=?
学生应能得到猜想:d= .
启发诱导:当点P不在特殊位置时,能否在距离不变的前提下适当移动点P到特殊位置,从而可利用前面的公式?(引导学生利用两平行线间的距离处处相等的性质,作平行线,把一般情形转化为特殊情形来处理)
证明:设过点P且与直线l平行的直线l1的方程为Ax+By+C1=0,令y=0,得P′( ,0).
∴P′N= . ()
∵P在直线l1:Ax+By+C1=0上,
∴Ax0+By0+C1=0.∴C1=-Ax0-By0.
代入()得|P′N|= , 即d= ,.
②可以验证,当A=0或B=0时,上述公式也成立.
③引导学生得到两条平行线l1:Ax+By+C1=0与l2:Ax+By+C2=0的距离d= .