1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
必修3《2.3.1变量之间的相关关系》优质课教案下载
[教学实践情况]:
一、 问题引出:请同学们如实填写下表(在空格中打“√” )
?好中差你的数学成绩???你的物理成绩?????然后回答如下问题:①“你的数学成绩对你的物理成绩有无影响?”②“如果你的数学成绩好,那么你 的物理成绩也不会太差,如果你的数学成绩差,那么你的物理成绩也不会太好。”对你来说,是这样吗?同意这种说法的同学请举手。
根据同学们回答的结果,让学生讨论:我们可以发现自己的数学成绩和物理成绩存在某种关系。(似乎就是数学好的,物理也好; 数学差的,物理也差,但又不全对。)教师总结如下:
物理成绩和数学成绩是两个变量,从经验看,由于物理学习要用到比较多的数学知识和数学方法。数学成绩的高低对物理成绩的高低是有一定影响的。但决非唯一因素,还有其它因素,如图所示(幻灯片给出):
? 因此,不能通过一个人的数学成绩是多少就准确地断定他的物理成绩能达到多少。但这两个变量是有一定关系的,它们之间是一种不确定性的关系。如何通过数学成绩的结果对物理成绩 进行合理估计有非常重要的现实意义。
二、 引出相关关系的概念
教师提问:“像刚才这种情况在现实生活中是否还有?”
学生甲:粮食产量与施肥用量的关系;
学生乙:人的体重与食肉数量的关系。
……
从而得出:两个变量之间的关系可能是确定的关系(如:函数关系),或非确定性关系。当自变量取值一定时,因变量也确定,则为确定关系;当自变量取值一定时,因变量带有随机性,这种变量之间的关系称为相关关系。相关关系是一种非确定性关系。
三、探究线性相关关系和其他相关关系
问题:在一次对人体脂肪和年龄关系的研究中,研究人员获得了一组样本数据:
人体的脂肪百分比和年龄
年龄23273941454950脂肪9.517.821.225.927.526.328.2?年龄53545657586061脂肪29.630.231.430.833.535.234.6针对于上述数据所提供的信息,你认为人体的脂肪含量与年龄之间有怎样的关系?教师特别向学生 强调在研究两个变量之间是否存在某种关系时,必须从散点图入手(向学生介绍什么是散点图)。并且引导学生从散点图上可以得出如下规律:
?1、如果所有的样本点都落在某一函数曲线上,那么变量之间具有函数关系(确定性关系);
2、如果所有的样本点都落在某一函数曲线的附近,那么变量之间具有相关关系(不确定性关系);
3、如果所有的样本点都落在某一直线附近,那么变量之间具有线性相关关系(不确定性关系)。
引导学生观察作出的散点图,体会现实生活中两个变量之间的关系存在着不确定性。散点图中的散点并不在一条直线上,只是分布在一条直线的周围,即为线性相关关系。
注:“回归”这个词是有英国著名的统计学家 Francils Galton 提出来的。1889年,他在研究祖先与后代身高之间的关系时发现,身材较高的父母,他们的孩子也较高,但这些孩子的平均身高并没有他们的父母平均身高高;身材较矮的父母,他们的孩子也较矮,但这些孩子的平均身高却比他们的父母平均身高高。Galton 把这种后代的身高向中间值靠近的趋势称为“回归现象”。后来,人们把由一个变量的变化去推测另一个变量的变化的方法称为“回归方法”。
那么如何求回归直线方程呢?人们在思考这个问题的时候,常用以下3种方法:
1、采用测量的方法,先画一条直线,测量出各点到它的距离,然后移动直线,到达一个使距离之和最小的位置,测量出此时直线的斜率和截距,就得到回归方程。
2、在图中选取两点画直线,使得直线两侧的点的个数基本相同。
3、在散点图中多取几个点,确定几条直线的方程,分别求出各条直线的斜率和截距的平均数,将这两个平均数作为回归方程的斜率和截距。