1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
《小结》教案优质课下载
教学过程
一、复习引入
⑴在一次考试中,考生有2万名,为了得到这些考生的数学平均成绩,将他们的成绩全部相加再除以考生总数,那将是十分麻烦的,怎样才能了解到这些考生的数学平均成绩呢?
⑵现有某灯泡厂生产的灯泡10000只,怎样才能了解到这批灯泡的使用寿命呢?
要解决这两个问题,就需要掌握一些统计学知识.在初中阶段,我们学习过一些统计学初步知识,了解了统计学的一些基本概念.学习了总体、个体、样本、样本的容量、总体平均数、样本平均数的意义:在统计学里,我们把所要考察对象的全体叫做总体,其中的每一个考察对象叫做个体,从总体中所抽取的一部分个体叫做总体的一个样本,样本中个体的数目叫做样本的容量.总体中所有个体的平均数叫做总体平均数,样本中所有个体的平均数叫做样本平均数.
统计学的基本思想方法是用样本估计总体,即通过从总体中抽取一个样本,根据样本的情况去估计总体的相应情况.因此,样本的抽去是否得当,对于研究总体来说就十分关键.究竟怎样从总体中抽取样本?怎样抽取的样本更能充分地反映总体的情况?本节课开始,我们就来学习几种常用的抽样方法?
二、新课
1、简单随机抽样:设一个总体的个体数为N.如果通过逐个抽取的方法从中抽取n个个体作为样本(n≤N),且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样。
用简单随机抽样从含有6个个体的总体中抽取一个容量为2的样本.问:
①总体中的某一个体在第一次抽取时被抽到的概率是多少?
②个体在第1次未被抽到,而第2次被抽到的概率是多少?
③在整个抽样过程中,个体被抽到的概率是多少?
分析:①总体中的某一个体在第一次抽取时被抽到的概率是;
②个体在第1次未被抽到,而第2次被抽到的概率是;
③由于个体在第一次被抽到与第2次被抽到是互斥事件,所以在整个抽样过程中,个体被抽到的概率是。
注释:
⑴一般地,用简单随机抽样从含有N个个体的总体中抽取一个容量为的样本时,每次抽取一个个体时任一个体被抽到的概率为;在整个抽样过程中各个个体被抽到的概率为;
⑵简单随机抽样的特点是,逐个抽取,且各个个体被抽到的概率相等;
⑶简单随机抽样方法,体现了抽样的客观性与公平性,是其他更复杂抽样方法的基础。
2、简单随机抽样的实施方法:
⑴抽签法:先将总体中的所有个体(共有N个)编号(号码可从1到N),并把号码写在形状、大小相同的号签上(号签可用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时每次从中抽一个号签,连续抽取n次,就得到一个容量为n的样本?
适用范围:总体的个体数不多时?
优点:抽签法简便易行,当总体的个体数不太多时适宜采用抽签法.
⑵随机数表法:10.制定随机数表;20.给总体中各个个体编号;30.按照一定的规则确定所要抽取的样本的号码?。
随机数表抽样“三步曲”:第一步,将总体中的个体编号;第二步,选定开始的数字;第三步,获取样本号码?。