1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
必修3《3.3.1几何概型》最新教案优质课下载
情感与态度目标:通过创设情境激发学生学习数学的情趣,培养其积极探索的精神.通过实际应用让学生体会到数学在现实生活中的价值,增强了学生学习数学的自信心.
2.学情分析
学生前面已经学习了随机事件的概率和古典概型,初步学会了用古典概型公式解决概率题,大多数学生对于概率的学习以及概率试验产生了浓厚的兴趣,逐渐会把一些问题模型化.但是学生在探究问题的能力,应用数学的意识等方面发展不够均衡,尚有待加强.
3.重点难点
重点:理解几何概型的定义、特点、及几何度量的寻找,会用公式计算几何概率.
难点:从实际问题的背景中找几何度量.
4.教学课时:共1课时
5.教学过程
5.1【导入】前面我们学习了用古典概型公式来求事件概率的方法,那么它的特点有哪些?(学生回答)然而在现实生活中,常常有事件发生无限多种情况,比如:取一根长为3米绳子,拉直后在任意位置剪断,那么剪得两段的长都不少于1米(事件A)的概率有多大? 能否用古典概型的公式来求解?事件A包含的基本事件有多少?
再比如:问题:图中有两个转盘.甲乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜.在两种情况下分别求甲获胜的概率是多少?
事实上,甲获胜的概率与字母B所在扇形区域的圆弧的长度有关,而与字母B所在区域的位置无关.因为转转盘时,指针指向圆弧上哪一点都是等可能的.不管这些区域是相邻,还是不相邻,甲获胜的概率是不变的.
5.2几何概型的定义
如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.
几何概型的特点:
(1)试验中所有可能出现的结果(基本事件)有无限多个.
(2)每个基本事件出现的可能性相等.
思考:与古典概型的区别?
几何概型的判断
下列概率模型中,是几何概型的有( )
(1)从区间[-10,10]内任取一个数,求取到1的概率
(2)从区间[-10,10]内任取一个数,求取到绝对值不大于1的概率
(3)从区间[-10,10]内任取一个整数,求取到大于1而小于2的概率
(4)向一个边长为4cm的正方形ABCD内投一点P,求点P离中心不超过1cm的概率
5.3在几何概型中,事件A的概率的计算公式如下:
与区域形状,位置无关,只于该区域大小有关