1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
必修4《3.2简单的三角恒等变换》新课标教案优质课下载
三维目标
1.通过经历二倍角的变形公式推导出半角的正弦、余弦和正切公式,能利用和与差的正弦、余弦公式推导出积化和差与和差化积公式,体会化归、换元、方程、逆向使用公式等数学思想,提高学生的推理能力.
2.理解并掌握二倍角的正弦、余弦、正切公式,并会利用公式进行简单的恒等变形,体会三角恒等变换在数学中的应用.
3.通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力.
重点难点
教学重点:1.半角公式、积化和差、和差化积公式的推导训练.
2.三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点.
教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力.
教学过程
导入新课
复习导入:
三角函数的化简、求值、证明,都离不开三角恒等变换.学习了和角公式,差角公式,倍角公式以后,我们就有了进行三角变换的新工具,从而使三角变换的内容、思路和方法更加丰富和灵活,同时也为培养和提高我们的推理、运算、实践能力提供了广阔的空间和发展的平台.对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,并以此为依据选择可以联系它们的适当公式,这是三角式恒等变换的重要特点.
提出问题
①α与 有什么关系?
②如何建立cosα与sin2 之间的关系?
③sin2 = ,cos2 = ,tan2 = 这三个式子有什么共同特点?
④通过上面的三个问题,你能感觉到代数变换与三角变换有哪些不同吗?
⑤证明(1)sinαcosβ= [sin(α+β)+sin(α-β)];
(2)sinθ+sinφ=2sin .
并观察这两个式子的左右两边在结构形式上有何不同?
活动:教师引导学生联想关于余弦的二倍角公式cosα=1-2sin2 ,将公式中的α用 代替,解出sin2 即可.教师对学生的讨论进行提问,学生可以发现:α是 的二倍角.在倍角公式cos2α=1-2sin2α中,以α代替2α,以 代替α,即得cosα=1-2sin2 ,
所以sin2 = . ①
在倍角公式cos2α=2cos2α-1中,以α代替2α,以 代替α,即得
cosα=2cos2 -1,
所以cos2 = . ②