师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆高中数学教材同步人教A版版必修4阅读与思考 向量的运算(运算律)与图形性质下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

必修4《阅读与思考向量的运算(运算律)与图形性质》精品教案优质课下载

明了平面几何图形中的有关性质,如平移、全等、相似、长度、夹角等可以由向量的线性运算及数量积表示.

3.情感态度与价值观:

通过本节学习,让学生深刻理解向量在处理有关平面几何问题中的优越性,活跃学生的思维,发展学生的创新意识,激发学生的学习积极性,并体会向量在几何和现实生活中的意义.教学中要求尽量引导学生使用信息技术这个现代化手段.

2学情分析

1.本节的目的是让学生加深对向量的认识,更好地体会向量这个工具的优越性.对于向量方法,就思路而言,几何中的向量方法完全与几何中的代数方法一致,不同的只是用“向量和向量运算”来代替“数和数的运算”.这就是把点、线、面等几何要素直接归结为向量,对这些向量借助于它们之间的运算进行讨论,然后把这些计算结果翻译成关于点、线、面的相应结果.代数方法的流程图可以简单地表述为:

则向量方法的流程图可以简单地表述为:

这就是本节给出的用向量方法解决几何问题的“三步曲”,也是本节的重点.

2.研究几何可以采取不同的方法,这些方法包括:

综合方法——不使用其他工具,对几何元素及其关系直接进行讨论;

解析方法——以数(代数式)和数(代数式)的运算为工具,对几何元素及其关系进行讨论;

向量方法——以向量和向量的运算为工具,对几何元素及其关系进行讨论;

分析方法——以微积分为工具,对几何元素及其关系进行讨论,等等.

前三种方法都是中学数学中出现的内容.

有些平面几何问题,利用向量方法求解比较容易.使用向量方法要点在于用向量表示线段或点,根据点与线之间的关系,建立向量等式,再根据向量的线性相关与无关的性质,得出向量的系数应满足的方程组,求出方程组的解,从而解决问题.使用向量方法时,要注意向量起点的选取,选取得当可使计算过程大大简化.

3重点难点

教学重点:用向量方法解决实际问题的基本方法;向量法解决几何问题的“三步曲”.

教学难点:如何将几何等实际问题化归为向量问题.

4教学过程

(一)

(二)

(三)

(四)

(五)

(六)

(七)作业布置:作业本

教材