1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
必修4《2.5.2向量在物理中的应用举例》最新教案优质课下载
2.教学难点:将物理中有关矢量的问题转化为数学中向量的问题.
(一)创设问题情境,引出新课
(章头图引入)章头图中,道路、路标体现了向量与位移、速度、力等物理量之间的密切联系.章引言说明了向量的研 究对象及研究方法.那么向量究竟是怎样应用于物理的呢?它就像章头图中的高速公路一样,是一条解决物理问题的高速公路.在学生渴望了解的企盼中,教师展示物理模型,由此展开新课.
(二) eq ﹨b﹨lc﹨ ﹨rc﹨ (﹨a﹨vs4﹨al﹨co1(应用示例))
利用向量解决力(速度、位移)的合成与分解
例1在日常生活中,你是否有这样的经验:两个人共提一个旅行包,夹角越大越费力;在单杠上做引体向上运动,两臂的夹角越小越省力.你能从数学的角度解释这种现象吗?
活动:这个日常生活问题可以抽象为如图1所示的数学模型,引导学生由向量的平行四边形法则,力的平衡及解直角三角形等知识来思考探究这个数学问题.这样物理中力的现象就转化为数学中的向量问题.只要分析清楚F、G、θ三者之 间的关系(其中F为F1、F2的合力),就得到了问题的数学解释.
图1
在 教学中要尽可能地采用多媒体,在信息技术的帮助下让学生来动态地观察|F|、|G|、θ之间在变化过程中所产生的相互影响.由学生独立完成本例后,与学生共同探究归纳出向量在物理中的应用的解题步骤,也可以由学生自己完成,还可以用信息技术来验证.
用向量解决物理问题的一般步骤是:①问题的转化,即把物理问题转化为数学问题;②模型的建立,即建立以向量为主体的数学模型;③参数的获得,即求出数学模型的有关解——理论参数值;④问题的答案,即回到问题的初始状态,解释相关的物理现象.
解:不妨设|F1|=|F2|,由向量的平行四边形法则、力的平衡以及直角三角形的知识,
可以知道cos eq ﹨f(θ,2) = eq ﹨f(﹨f(1,2)|G|,|F1|) ?|F1|= eq ﹨f(|G|,2cos﹨f(θ,2)) .
通过上面的式子,我们发现:当θ由0°到180°逐渐变大时, eq ﹨f(θ,2) 由0°到90°逐渐变大,cos eq ﹨f(θ,2) 的值由大逐渐变小,因此|F1|由小逐渐变大,即F1,F2之间的夹角越大越费力,夹角越小越省力.
点评:本例是日常生活中经常遇到的问题,学生也会有两人共提一个旅行包以及在单杠上做引体向上运动的经验.本例的关键是作出简单的受力分析图,启发学生将物理现象转化成模型,从数学角 度进行解释,这就是本例活动中所完成的事情.教学中要充分利用好这个模型,为解决其他物理问题打下基础.得到模型后就可以发现,这是一个很简单的向量问题,这也是向量工具优越性的具体体现.
你能总 结用向量解决物理问题的一般步骤吗?
(1)问题的转化:把物理问题转化为数学问题;
(2)模型的建立:建立以向量为主体的数学模型;
(3) 参数的获得:求出数学模型的有关解——理论参数值;
(4)问题的答案:回到问题的初始状态, 解决相关物理现象.
例2. 一条河的两岸平行,河的宽度d=500m , 一艘船从 A处出发到河的正对岸B处, 船航行的速度|v1|=10 km/h, 水流速度|v2|=4 km/h,那么v1与v2的夹角θ(精确到1°) 多大时,船才能垂直到达对岸 B 处?船行驶多少时间 (精确到0.1min)?
分析:如果水是静止的,则船只要取垂直于河对岸的方向行驶就可以了,但由于水流的作用,船要被水冲向下游,因此要使船垂直到达对岸,就要使v1与v2的合速度的方向正好垂直于河岸方向。
解:
所以
答:行驶航程 最短时,所用时间是3.1min