师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆高中数学教材同步人教A版版必修43.1.1 两角差的余弦公式下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

《3.1.1两角差的余弦公式》教案优质课下载

教学重难点

重点:通过探索得到两角差的余弦公式

难点:探索过程的组织和适当引导

教学过程

情景引入

变换是数学的重要工具

1.在初中我们已经学过代数的变换( 如数、式、方程和不等式的恒等变换);

2.在本册数学4的第一章也学习过同角三角函数式的恒等变换(如平方关系,商数关系等).

二、课堂探究(一):若 为两个任意角,

则 成立吗?

因此,对角一般不成立.

课堂探究(二):要获得 的表达式,需要哪些已学过的知识?

涉及 三角的余弦值,可以考虑联系单位圆上的三角函数线或向量的知识.

如图1,设角α的终边与单位圆的交点为P1,∠POP1=β,则∠POx=α-β.过点P作PM垂直于x轴,垂足为M,那么OM就是角α-β的余弦线,即OM=cos(α-β),这里就是要用角α、β的正弦线、余弦线来表示OM.过点P作PA垂直于OP1,垂足为A,过点A作AB垂直于x轴,垂足为B,过点P作PC垂直于AB,垂足为C.那么,OA表示cosβ,AP表示sinβ,并且∠PAC=∠P1Ox=α.于是,OM=OB+BM=OB+CP=OAcosα+APsinα=cosβcosα+sinβsinα.所以,cos(α-β)=cosαcosβ+sinαsinβ.

图1

教师引导学生进一步思考,以上的推理过程中,角α、β、α-β是有条件限制的,即α、β、α-β均为锐角,且α>β,如果要说明此结果是否对任意角α、β都成立,还要做不少推广工作,并且这项推广工作的过程比较繁琐,由同学们课后动手试一试.

问题③,教师引导学生,可否利用刚学过的向量知识来探究这个问题呢?如图2,在平面直角坐标系xOy内作单位圆O,以Ox为始边作角α、β,它们的终边与单位圆O的交点分别为A、B,则=(cosα,sinα),=(cosβ,sinβ),∠AOB=α-β.

图2

由向量数量积的定义有·=||||·cos(α-β)=cos(α-β),

由向量数量积的坐标表示有

·=(cosα,sinα)(cosβ,sinβ)=cosαcosβ+sinαsinβ,

于是,cos(α-β)=cosαcosβ+sinαsinβ.

我们发现,运用向量工具进行探究推导,过程相当简洁,但在向量数量积的概念中,角α-β必须符合条件0≤α-β≤π,以上结论才正确,由于α、β都是任意角,α-β也是任意角,因此就是研究当α-β是任意角时,以上公式是否正确的问题.当α-β是任意角时,由诱导公式,总可以找到一个角θ∈[0,2π),使cosθ=cos(α-β),若θ∈[0,π],则·=cosθ=cos(α-β).若θ∈[π,2π],则2π-θ∈[0,π],且·=cos(2π-θ)=cosθ=cos(α-β).

由此可知,对于任意角α、β都有

此公式给出了任意角α、β的正弦、余弦值与其差角α-β的余弦值之间的关系,称为差角的余弦公式,简记为C(α-β).有了公式C(α-β)以后,我们只要知道cosα、cosβ、sinα、sinβ的值,就可以求得cos(α-β)的值了.

教材