1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
《2.3.4平面向量共线的坐标表示》新课标教案优质课下载
学生已经掌握了平面几何的基本知识,而且学习了平面向量共线的相关概念和坐标表示的简单运算,这为本节课的学习奠定了必要的知识基础。他们已经具备了初步归纳的能力但是要加强他们全面深入探究问题能力,通过本节课的学习使学生在自主探索和合作交流的过程中将感性认识升华到理性认识,充分锻炼他们的思维能力。
(三)教学目标
(1)知识目标:理解平面向量共线的坐标表示,会根据向量的坐标,判断向量是否共线,并掌握平面上两点间的中点坐标公式及定点坐标公式;
(2)能力目标:通过学习向量共线的 坐标表示,使学生认识事物之间的相互联系,培养学生辨证思维能力;
(3)情感目标:在解决问题过程中要形成见数思形、以形助数的思维习惯,以加深理解知识要点,增强应用意识.
(四)教学重点和难点
(1)重点:向量共线的坐标表示及直线上点的坐标的求解;
(2)难点:定比分点的理解和应用。
【教法分析】
教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。 针对本节课的教学目标和学生的实际情况,在教学中采用“问题教学法和引探式教学法”的教学方法。
教学手段:应用多媒体课件、实物投影仪。
【学法指导】
本节课主要调动学生积极思考主动探索,增加学生参与教学活动的时间,我采用了以下学法指导:
探究式指导法:应用平面向量共线条件的坐标表示来解决向量的共线问题优点在于不需要引入“λ”从而减少了未知数的个数,而且使问题具有代数化的特点、程序化的特征;
2.归纳式指导法:三点共线问题的实质是向量共线问题.利用向量平行证明三点共线需分两步完成:(1)证明向量平行;(2)证明两个向量有公共点.
3.迁移式指导法:引导学生推导平面上两点间的中点坐标公式及定点坐标公式。
4.合作交流法。
【教学过程设计】
一、新知导入
(一)、复习回顾
1、向量共线充要条件:
2.平面向量的坐标运算:
(1).已知 a=(x1,y1),b=(x2,y2)
a+b=(x1+x2,y1+y2).
a-b=(x1-x2,y1-y2).