1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
必修5《1.1.1正弦定理》新课标教案优质课下载
2.学生现实分析
(1)学生在初中已学过有关直角三角形的一些知识:
①勾股定理②三角函数式
(2)学生在初中已学过有关任意三角形的一些知识:
①
②大边对大角,小边对小角
③两边之和大于第三边,两边之差小于第三边
(3)学生在高中已学过必修4(包括三角函数与平面向量)
(4)学生已具备初步的数学建模能力,会从简单的实际问题中抽象出数学模型
3.教学目标分析
知识目标:
(1)正弦定理的发现
(2)证明正弦定理的几何法和向量法
(3)正弦定理的简单应用
能力目标:
(1)培养学生观察、分析问题、应用所学知识解决实际问题的能力
(2)通过向量把三角形的边长和三角函数建立起关系,在解决问题的过程中培养学生的联想能力、综合应用知识的能力
情感目标:
(1)设置情景,培养学生的独立探究意识,激发学生学习兴趣
(2)鼓励学生探索规律、发现规律、解决实际问题
(3)通过共同剖析、探讨问题,推进师生合作意识,加强相互评价与自我反思
二、教学展开分析
1.教学重点与难点分析
教学重点是发现正弦定理、用几何法和向量法证明正弦定理。正弦定理是三角形边角关系中最常见、最重要的两个定理之一,它准确反映了三角形中各边与它所对角的正弦的关系,对于它的形式、内容、证明方法和应用必须引起足够的重视。正弦定理要求学生综合运用正弦定理和内角和定理等众多基础知识解决几何问题和实际应用问题,这些知识的掌握,有助于培养分析问题和解决问题能力,所以一向为数学教育所重视。
教学难点是用向量法证明正弦定理。虽然学生刚学过必修4中的平面向量的知识,但是要利用向量推导正弦定理,有一定的困难。突破此难点的关键是引导学生通过向量的数量积把三角形的边长和内角的三角函数联系起来。用平面向量的数量积方法证明这个定理,使学生巩固向量知识,突出了向量的工具性,是向量知识应用的范例。