师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆高中数学教材同步人教A版版必修51.2 应用举例(通用)下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

人教A版2003课标版《1.2应用举例(通用)》教案优质课下载

2.通过对设计方案的分析,理解建构三角形模型的一般方法;

3.结合用测量工具收集的数据,巩固应用正弦定理和余弦定理解三角形问题.

二、教学目标解析:

教学目标:

1.体会从实际情境中发现问题——设计方案建构数学模型——运用正弦定理、余弦定理等知识进行计算求解——检验的数学建模过程,培养学生的数学建模素养;

2.归纳建构三角形模型的一般方法,解决有关底部不可到达的建筑物高度测量的问题;

3.操作简单的测量工具测量仰角、距离等,收集数据,进行解三角形运算,使学生掌握正弦定理和余弦定理的应用;

4.通过小组交流汇报的形式展示数学建模过程,让学生体会数学建模思想,培养学生的数学表达能力;

5.创设问题情境、组织讨论交流提高学生参与学习的热情,通过小组合作学习方式,培养学生的合作意识和合作学习的能力,发展学生的创新意识和实践能力.

(二)目标解析:

1.高中数学学科素养包含数学抽象、逻辑推理、几何直观、数学运算、数据分析和数学建模六个方面,本节课的重点突出数学建模素养其中数学建模是对现实问题进行数学抽象,用数学语言表达问题、用数学知识与方法构建模型解决问题的过程.本节课从实际背景出发,让学生亲自经历提出问题、建构模型、应用数学知识运算得到数学结果,反复检验得到符合实际的结果这样一个数学建模过程,培养学生数学建模素养;

2.本节的例题是有关测量底部不可到达的建筑物等的高度的问题.由于底部不可到达,常常需要建构多个三角形,用正弦定理和余 弦定理计算出建筑物顶部或底部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.本节课主要是研究解斜三角形在测量中的应用,关于测量问题,一是要通过对工具的使用熟悉仰角、俯角的意义,二是要会选点构建三角形模型,在几个三角形中找出已知与未知之间的关系,逐步逐层转化,最终归结为解三角形的问题;

3.用数学是学数学的出发点和归宿,通过设计操作实验,让学生体验数学在解决问题中的应用价值;

4.将探究问题与解三角形运算相结合,引导学生既要关注实际背景,又要重视基础落实,同时创造更多的实践机会在“做数学”中落实基础;

5.通过小组合作的方式完成测量任务,在课上以小组汇报的形式展示实验报告,以小组为单位进行讨论交流,培养学生合作学习的能力.

三、学情分析:

1.学生学习背景:

我校属于区属市重点学校,学生知识基础较好,学校有丰富的社团活动,学生有小组活动经验,具有一定的动手能力和表达能力.

学生知识储备:

学生在初中已经学习过解直角三角形,能够通过建立直角三角形模型解决实际问题中的长度和角度的测量,在必修一中学生已经学习过数学建模的知识,了解建模的基本过程.在本章第一节学生学习了正弦定理和余弦定理,这些知识都将为本节课的学习奠定基础,在此基础上进一步向探究构建多个三角形的问题自然过渡.

在研究中学生无法构建数学模型,或者是没有从所给的背景资料中正确的提取出数学信息也将成为本节课学习的障碍,在完成测量任务的过程中依靠实际生活背景,指导学生应用简单的测量工具,帮助学生理解数学概念,借助课本例题引导学生应用于实际问题.坚持引导——讨论——归纳,目的不在于让学生记住结论,更多的要养成良好的研究、探索习惯.

教学难点:从不同设计方案中概括数学建模的一般方法.

四、教学策略分析:

本节课以数学实验为抓手,以问题探究为载体,为学生提供动手操做、动脑思考和主动交流的机会,引导学生积极思考、合作探究,体现“重过程、重情感、重生活”的理念.教学中在学生体验测量过程的基础上,通过学生动手实践、动手画图等方法探究数学知识获取直接经验,进而培养学生学会数学地思考问题的能力,增进应用意识和问题意识.利用学生感兴趣的数学文化知识和生活中的问题,实现情感、态度、价值观目标.通过小组交流,互相取长补短,提高合作意识.

五、教学过程: