1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
必修5《信息技术应用用Excel解线性规划问题举例》新课标教案优质课下载
2.能画出二元一次不等式(组)所表示的平面区域.
过程与方法:
1.培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想;
2.提高学生“建模”和解决实际问题的能力;
3.本节新课讲授分为五步(思考、尝试、猜想、证明、归纳)来进行,目的是为了分散难点,层层递进,突出重点,只要学生对旧知识掌握较好,完全有可能由学生主动去探求新知,得出结论.
核心素养:
1.通过本节教学着重培养学生掌握“数形结合”的数学思想,尽管侧重于用“数”研究“形”,但同时也用“形”去研究“数”,培养学生观察、联想、猜测、归纳等数学能力;
2.结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生勇于创新的核心素养。.
二.重点难点?
重点:会求二元一次不等式(组)表示平面的区域.
难点:如何把实际问题转化为线性规划问题,并给出解答.
三、教材与学情分析
由具体问题的解决,让学生去感受、体验现实世界和日常生活中存在着大量的需要用不同的数学模型来刻画和研究它们.借助前面学习了一元二次不等式及其解法,类比数形结合思想解决二元一次不等式问题,并鼓励学生用数学观点进行类比、归纳、抽象,及数形结合思想,感受函数思想在解决二元一次不等式的作用。激发学生顽强的探究精神和严肃认真的科学态度,同时去感受数学的应用性,体会数学的奥秘、数学的简洁美、数学推理的严谨美,激发学生的学习兴趣.
四、教学方法
问题引导,主动探究,启发式教学.
五、教学过程
(一)导入新课
师 在现实和数学中,我们会遇到各种不同的不等关系,需要用不同的数学模型来刻画和研究它们.前面我们学习了一元二次不等式及其解法,这里我们将学习另一种不等关系的模型.先看一个实际例子.
一家银行的信贷部计划年初投入25 000 000元用于企业和个人贷款,希望这笔贷款资金至少可带来30 000元的效益,其中从企业贷款中获益12%,从个人贷款中获益10%,那么,信贷部应该如何分配资金呢?
师 这个问题中存在一些不等关系,我们应该用什么不等式模型来刻画它们呢?
生 设用于企业贷款的资金为x元,用于个人贷款的资金为y元,由资金总数为25 000 000元,
得到x+y≤25 000 000.①
师 由于预计企业贷款创收12%,个人贷款创收10%.共创收30 000元以上,所以
(12%)x+(10%)y≥30 000,即12x+10y≥3 000 000.②
师 最后考虑到用于企业贷款和个人贷款的资金数额都不能是负数,于是