师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆高中数学教材同步人教A版版必修5信息技术应用 用Excel解线性规划问题举例下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

《信息技术应用用Excel解线性规划问题举例》优质课教案下载

二、教学目标

(1)知识与技能:使学生了解二元一次不等式表示平面区域;了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;理解线性规划问题的图解法,并能应用它解决一些简单的实际问题;

(2)过程与方法:在实验探究的过程中,培养学生的数据分析能力、探究能力、合情推理能力;在应用图解法解题的过程中,培养学生运用数形结合思想解题的能力。

(3)情态、态度与价值观:让学生体会数学源于生活,服务于生活;体会数学活动充满着探索与创造,培养学生动手操作、勇于探索的精神。

三、教学重、难点

1、教学重点 :求线性规划问题的最优解

2、教学难点 :学生对为什么要将求目标函数的最值问题转化为经过可行域的直线在y轴上的截距的最值问题以及如何想到这样转化存在疑惑,在教学中应紧扣实际,突出知识的形成发展过程。

四、学生学情分析

本节课学生在学习了不等式、直线方程的基础上,通过实例理解了平面区域的意义,并会画出平面区域,还能初步用数学关系表示简单的二元线性规划的限制条件,将实际问题转化成数学问题。从数学知识上看,问题涉及多个已知数据,多个字母变量、多个不等关系,从数学方法上看,学生对图解法的认识还很少,数形结合的思想方法的掌握还需时日,这成了学生学习的困难。

五、教学方法:变式教学,通过一道题或者尽量少的题目来实现教学目标

六、教学手段:采用计算机辅助教学。

七、教学设计过程

【回忆旧知】

对上节课的总结,对这节课做铺垫,检查学生对知识的掌握情况

【新课引入】

  我们知道,二元一次不等式和二元一次不等式组都表示平面区域,在这里开始,教学又翻开了新的一页,在今后的学习中,我们可以逐步看到它的运用.

【线性规划】

   【例1】先讨论下面的问题

设 ,式中变量x、y满足下列条件

  求z的最大值和最小值.

(设计意图:让学生初步了解线性规划解题方式)

分析:把稍作变形为,作出一组平行 直线,所以z的变化体现在纵截距的变化。作一条斜率为 -2的直线,当此直线平移时,发现当直线过A点时,纵截距最大,即z值最大,过B点时截距最小,即z值最小。所以求出A,B坐标,代入目标函数:

  在上述问题中,不等式组①是一组对变量x、y的约束条件,这组约束条件都是关于x、y的一次不等式,所以又称线性约束条件.线性约束条件除了用一次不等式表示外,有时也有一次方程表示.

   是欲达到最大值或最小值所涉及的变量x、y的解析式,叫做目标函数,由于 又是x、y的解析式,所以又叫线性目标函数,上述问题就是求线性目标函数 在线性约束条件①下的最大值和最小值问题,一般来说线性目标函数在线性约束条件下的最值都在平面区域边界处取得。  

相关资源