师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆高中数学教材同步人教A版版必修5信息技术应用 用Excel解线性规划问题举例下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

必修5《信息技术应用用Excel解线性规划问题举例》最新教案优质课下载

三、教学目标:

(1)知识与技能:使学生了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组;了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;理解线性规划问题的图解法,并能应用它解决一些简单的线性规划问题;

(2)过程与方法:在实验探究的过程中,培养学生的数据分析能力、探究能力、合情推理能力;在应用图解法解题的过程中,培养学生运用数形结合思想解题的能力。

(3)情态、态度与价值观:让学生体会数学源于生活,服务于生活;体会数学活动充满着探索与创造,培养学生动手操作、勇于探索的精神。

四、考情考向分析:

以画二元一次不等式(组)表示的平面区域、目标函数最值的求法为主,兼顾由最优解(可行域)情况确定参数的范围,以及简单线性规划问题的实际应用,加强转化与化归和数形结合思想的应用意识.本节内容在高考中以选择、填空题的形式进行考查,难度中低档.

五、教学重难点:

重点:图解法求线性规划问题的最优解.

难点:如何将求目标函数的最值问题转化为经过可行域的直线在y轴上的截距的最值问题;利用目标函数的几何意义求非线性目标函数最大值或最小值.

六、教学过程:

1.二元一次不等式表示的平面区域

(1)一般地,二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.我们把直线画成虚线,以表示区域不包括边界直线.当我们在坐标系中画不等式Ax+By+C≥0所表示的平面区域时,此区域应包括边界直线,则把边界直线画成实线.

(2)对于直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C,所得的符号都相同,所以只需在此直线的同一侧取一个特殊点(x0,y0)作为测试点,由Ax0+By0+C的符号即可断定Ax+By+C>0表示的是直线Ax+By+C=0哪一侧的平面区域.

【重要结论】

画二元一次不等式表示的平面区域的直线定界,特殊点定域:

(1)直线定界:不等式中无等号时直线画成虚线,有等号时直线画成实线.

(2)特殊点定域:若直线不过原点,特殊点常选原点;若直线过原点,则特殊点常选取(0,1)或(1,0)来验证.

2.线性规划相关概念

名称意义约束条件由变量x,y组成的一次不等式线性约束条件由x,y的一次不等式(或方程)组成的不等式组目标函数欲求最大值或最小值的函数线性目标函数关于x,y的一次解析式可行解满足线性约束条件的解可行域所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题

1、下列各点中,不在 EMBED Equation.DSMT4 表示的平面区域内的是(  )

A.(0,1) B.(3,-2) C.(-1,3) D.(-3,1)

答案 C

解析 把各点的坐标代入可得(-1,3)不适合,故选C.

2、不等式组 EMBED Equation.DSMT4 表示的平面区域是(  )

相关资源