师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆高中数学教材同步人教A版版选修1-13.4 生活中的优化问题举例下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

《3.4生活中的优化问题举例》最新教案优质课下载

【教学重点】

利用线性规划知识解决生活中的一些优化问题.

【教学难点】

利用线性规划知识解决实际生活中的最优解

【教学过程】

一.创设情景

生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.通过前面的学习,我们知道,线性规划是求函数最大(小)值的有力工具.这一节,我们利用线性规划知识,解决一些生活中的优化问题.

二.新课讲授

1.课题导入

[复习提问]

1、二元一次不等式 EMBED Equation.3 在平面直角坐标系中表示什么图形?

2、怎样画二元一次不等式(组)所表示的平面区域?应注意哪些事项?

2.讲授新课

在现实生产、生活中,经常会遇到资源利用、人力调配、生产安排等问题。

1、下面我们就来看有关与生产安排的一个问题:

引例:某工厂有A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件耗时1h,每生产一件乙产品使用4个B配件耗时2h,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天8h计算,该厂所有可能的日生产安排是什么?

(1)用不等式组表示问题中的限制条件:

设甲、乙两种产品分别生产x、y件,又已知条件可得二元一次不等式组:

……(1)

(2)画出不等式组所表示的平面区域:

如图,图中的阴影部分的整点(坐标为整数的点)就代表所有可能的日生产安排。

(3)提出新问题:

进一步,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?

(4)尝试解答:

设生产甲产品x件,乙产品y件时,工厂获得的利润为z,则z=2x+3y.这样,上述问题就转化为:

教材