师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆高中数学教材同步人教A版版选修2-1习题2.3下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

人教A版2003课标版《习题2.3》教案优质课下载

我们知道“解析法”思想始终贯穿在这全章的每个知识点,同时“转化、讨论”思想也相映其中,无形中增添了数学的魅力以及优化了知识结构。从学生角度而言,大多数学生普遍反映平面解析几何的学习是不轻松的、做题就更困难了。这章公式是多,而且后面内容较抽象,计算量非常大,所以难度就大大增加,进而给学习带来了挑战及困惑。关于公式,不少学生仍然采用的是传统的学习方式:死记硬背,机械模仿,导致在解题中往往碰壁而影响了学习兴趣及积极性。所以就有了“解析几何”是高中阶段最难的内容。但是用代数方法研究几何思路清晰,可以充分运用各种公式解题,特别要注意寻找题目中或者曲线本身所含的等量关系,解题方法就自然和容易了。

学情分析

学生学习的重点一是熟练掌握圆锥曲线的标准方程及相应的图形和性质,特别要注意形与数的一一对应. 重点二是掌握圆锥曲线的定义,能在已知条件合适时,自觉地想到利用定义求圆锥曲线方程,或利用定义求圆锥曲线有关的量.难点在于不易利用平面几何知识选择最简便的方法去解决问题.解析几何固然是用代数方法研究几何问题,但毕竟它仍是几何问题,因而几何图形原有的性质也不能抛弃不用

教学目标

知识与技能目标

双曲线的第一定义及椭圆、双曲线和抛物线的统一定义,并能利用定义求出与圆锥曲线有关的量,也能利用定义求出圆锥曲线方程.

过程与方法目标

掌握椭圆、双曲线、抛物线的标准方程及相应图象,并掌握相应的性质:图形范围、对称性、顶点、长轴、短轴、实轴、虚轴、焦距、焦点、离心率、准线、渐近线.?

情感态度与价值目标

理解解析几何用代数方法研究图形的几何性质的学习特点.?

教学过程?

椭圆、双曲线和抛物线是解析几何重点研究的曲线.研究的主要内容是椭圆、双曲线和抛物线的形成,即它们的定义及相应的方程;又由方程的代数性质研究曲线的几何性质;圆锥曲线的一般方程是怎样分类的,从而知道它们可表示不同的圆锥曲线;经过平移后圆锥曲线的方程和相应性质.

?复习方程、图形及性质?

教师在黑板上画出中心在原点的两种椭圆和双曲线的图形,并画出顶点在原点的四种抛物线的图形.然后提问学生,让学生叙述这些图形的几何性质;范围,对称性,顶点,焦点,长轴,短轴,实轴,虚轴,焦距,准线,离心率,渐近线.还要复习“等轴双曲线”及“共轭双曲线”的概念。 ?

复习椭圆定义?

对于圆锥曲线的统一定义,圆锥曲线上一点到焦点的距离与到相应准线距离之比为正常数e,当0<e<1时,动点轨迹为椭圆;当e=1时,动点轨迹为抛物线;当e>1时,动点轨迹为双曲线。

椭圆:1.定义式:|PF1|+|PF2|=2a(2a>|F1F2|).

2.标准方程:焦点在x轴上: eq ﹨f(x2,a2) + eq ﹨f(y2,b2) =1(a>b>0);

焦点在y轴上: eq ﹨f(y2,a2) + eq ﹨f(x2,b2) =1(a>b>0);

焦点不确定:mx2+ny2=1(m>0,n>0).

3.离心率:e= eq ﹨f(c,a) = eq ﹨r(1-(﹨f(b,a))2) <1.

4.过焦点垂直于对称轴的弦长即通径长为 eq ﹨f(2b2,a) .

二,例题讲解

[例1] (2012年高考安徽卷)如图,点F1(-c,0),F2(c,0)分别是椭圆C: eq ﹨f(x2,a2) + eq ﹨f(y2,b2) =1(a>b>0)的左、右焦点,过点F1作x轴的垂线交椭圆C的上半部分于点P,过点F2作直线PF2的垂线交直线x= eq ﹨f(a2,c) 于点Q.

(1)如果点Q的坐标是(4,4),求此时椭圆C的方程;

教材