1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
人教A版2003课标版《1.3.2函数的极值与导数》公开课教案优质课下载
二、教学重点难点
教学重点:极大、极小值的概念和判别方法,以及求可导函数的极值的步骤.
教学难点:对极大、极小值概念的理解及求可导函数的极值的步骤.
三、教学过程:
函数的赠与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解.我们以导数为工具,对研究函数的增减及极值和最值带来很大方便.
四、学情分析:
我们的学生基础普遍薄弱,学生已有的知识和实验水平有有限。这就需要教师指导并借助动画给予直观的认识。
五、教学方法:
发现式、启发式
新授课教学基本环节:
预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习。
六、课前准备
1.学生的学习准备:画图工具,预习本节课内容,并进行思考探究。
2.教师的教学准备:多媒体课件制作,课内探究知识,课后延伸拓练习。
七、课时安排:1课时
八、教学过程
(一)预习检查、总结疑惑
检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。
提问
创设情景
观察图3.3-8,我们发现, 时,高台跳水运动员距水面高度最大.那么,函数 在此点的导数是多少呢?此点附近的图像有什么特点?相应地,导数的符号有什么变化规律?
放大 附近函数 的图像,如图3.3-9.可以看出 ;在 ,当 时,函数 单调递增, ;当 时,函数 单调递减, ;这就说明,在 附近,函数值先增( , )后减( , ).这样,当 在 的附近从小到大经过 时, 先正后负,且 连续变化,于是有 .
对于一般的函数 ,是否也有这样的性质呢?
附:对极大、极小值概念的理解,可以结合图象进行说明.并且要说明函数的极值是就函数在某一点附近的小区间而言的. 从图象观察得出,判别极大、极小值的方法.判断极值点的关键是这点两侧的导数异号
创设情景