1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
《信息技术应用曲边梯形的面积》最新教案优质课下载
2、过程与方法目标:
(1)通过问题的探究体会“以直代曲、无限逼近”的思想。
(2)通过类比体会从具体到抽象、从特殊到一般的数学思想方法。
3、情感、态度与价值观目标:
在探究中进一步感受极限的思想,体会直与曲虽然是对立矛盾的,但它们可以相互转化,体现对立统一的辩证关系,在问题解决中体验成功的愉悦,感受数学的魅力。
二、学情分析
本节课的教学对象是民语班的学生。
学生在本节课之前已经具备的认知基础有:
一是学生已学习过如何通过割补的方法计算不规则直边图形的面积;学生在必修3的阅读与思考内容中对刘徽的“割圆术”求圆面积的方法已经有所了解。
二是学生虽然未学习过极限的有关知识,但通过导数的学习,对极限有了初步的认识。
学生在本节课学习中将会面临的难点:
一是部分学生汉语程度相对较为薄弱,一些数学名词难以准确理解,因此需要借助民语教材对部分名词做民语标注,帮助学生准确掌握和学习;此外,学生的汉语表达能力较差,需要即时引导学生进行准确表述和学习。
二是本节课的学习过程中如何“以直代曲”,即学生如何将割圆术中“以直代曲,无限逼近”的思想灵活地迁移到一般的曲边梯形上.具体说来就是:如何选择适当的直边图形(矩形、三角形或梯形)代替曲边梯形,并使细分的过程程序化且便于操作和计算。
三、重点难点
教学重点:
探究求曲边梯形面积的方法。
教学难点:
把“以直代曲”的思想方法转化为具体可操作的步骤,理解“无限逼近”的思想方法。
四、教学过程
一、问题情境—生活中的数学原型
【教师提问】观察下面的图片,从图片中截取一个平面图形,观察图形,如何求图形的面积?
图片:
图形二:
【思考】“曲边梯形”与“直边图形”的主要区别是什么?
【设计意图】