1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
人教A版2003课标版《1.7.2定积分在物理中的应用》教案优质课下载
二、教学重点与难点
重点 曲边梯形面积的求法
难点 定积分求体积以及在物理中应用
三、教学过程
1、复习
1、求曲边梯形的思想方法是什么?2、定积分的几何意义是什么?
3、微积分基本定理是什么?
2、定积分的应用
(一)利用定积分求平面图形的面积
例1.计算由两条抛物线 和 所围成的图形的面积.
分析:两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。
解: ,所以两曲线的交点为(0,0)、
(1,1),面积S= ,所以 = eq ﹨f(1,3)
【点评】在直角坐标系下平面图形的面积的四个步骤:
1.作图象;2.求交点;3.用定积分表示所求的面积;4.微积分基本定理求定积分。
巩固练习 计算由曲线 和 所围成的图形的面积.
例2.计算由直线 ,曲线 以及x轴所围图形的面积S.
分析:首先画出草图(图1.7 一2 ) ,并设法把所求图形的面积问题转化为求曲边梯形的面积问题.与例 1 不同的是,还需把所求图形的面积分成两部分S1和S2.为了确定出被积函数和积分的上、下限,需要求出直线 与曲线 的交点的横坐标,直线 与 x 轴的交点.
解:作出直线 ,曲线 的草图,所求面积为图1. 7一2 阴影部分的面积.
解方程组 得直线 与曲线 的交点的坐标为(8,4) .
直线 与x轴的交点为(4,0).
因此,所求图形的面积为S=S1+S2
由上面的例题可以发现,在利用定积分求平面图形的面积时,一般要先画出它的草图,再借助图形直观确定出被积函数以及积分的上、下限.
例3.求曲线 与直线