1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
选修2-2《复习参考题》教案优质课下载
(二)情感目标:
进一步培养严谨的科学思维品质,让学生初步认识有限与无限的辩证关系,感悟数学的理性精神,欣赏数学的美与理.
(三)能力目标:
培养“大胆猜想,小心求证”的科学思维品质,培养发现问题与提出问题的数学意识,培养数学学习中的合作交流的能力,使学生初步掌握由归纳到猜想再到证明的数学思想方法.
二、教学重点
掌握数学归纳法证明题目的步骤,掌握数学归纳法的一些应用.
三、教学难点
应用数学归纳法第二个步骤中从k 到k+1的变化情况分析.
四、教学过程
(一)引入课题
将课前准备好的多米诺骨牌摆好并进行演示,观察其中出现的“多米诺现象”:推倒头一块骨牌,它会带倒第二块,再带倒第三块,……,直到所有骨牌全部倒下.
假设多米诺骨牌有无穷多块,在摆多米诺骨牌时,怎样才能保证所有的骨牌一块接一块地倒下?
学生:首先必须推倒第一块,接着是假如前面一块倒下,要保证它倒下时会撞倒下一块.这两个条件满足了,全部的骨牌都将倒下.
教师:生活中还有许多现象与“多米诺现象”类似,也都可以提出同样的问题并作出相同的回答,例如:在燃放鞭炮时怎样才能保证所有的鞭炮逐个地全部燃爆?在一列队伍中传达口令,怎样才能保证口令能从第一个士兵开始逐个传遍整个队伍?
(二)传授新知:
教师:现在我们把骨牌想象为一系列无穷多个编了号的命题: 假定我们能够证明最初的一个命题 正确(奠基);由每一个命题 的正确性都可以推出它的下一个命题 的正确性(过渡).那么我们便证明了这一系列命题的正确性.请将这个过程与多米诺现象进行类比.
在数学中这种证明问题的方法称为数学归纳法.在数学中采用数学归纳法证明与自然数有关的命题时,有以下两个步骤:
第一步,证明 时命题成立;
第二步,证明:如果 时命题成立,那么 时命题也成立.
根据以上两步可以断定,命题对任何正整数 都成立.
1.用数学归纳法证明:如果 是一个等差数列,那么 对一切 都成立.
【证明】(1)当 时,左边= ,右边= ,等式成立;
(2)假设当 时,等式成立,即 ,
那么 .
这表明,当 时,等式也成立.