1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
人教A版2003课标版《3.1.1数系的扩充和复数的概念》优质课教案下载
教材通过问题情境:“方程x2+1=0在实数集中无解,如何设想一种方法使该方程有解?”引出扩充数系的必要性,从而引入虚数、复数的概念.复数实际上是一对有序数对,即a+bi(a,b),类比实数可以用数轴上的点表示,复数就可以在直角坐标系中用点或向量表示,从而有了复数的几何意义,使数和形得到了有机的结合.
复数代数形式的四则运算可以类比代数式运算中的“合并同类项”“分母有理化”等,利用i2=-1,将复数代数形式的四则运算归结为实数的四则运算,体现了化虚为实的化归思想.
复数的加法、减法运算还可以通过向量的加法、减法的平行四边形或三角形法则来进行,这不仅又一次看到了向量这一工具的功能,也把复数及其加、减运算与向量及其加、减运算完美地统一起来.
教材每节设置了“思考”“探究”,让学生通过类比思想,并借助于具体实例对数系进行了扩充,研究了复数代数形式的几何意义和复数加、减法的运算及几何意义,体现了《课标》以学生为主体的教学理念,有利于培养学生的思想素质和激发学习数学的兴趣和欲望.
本章的重点是复数的概念及复数代数形式的四则运算,本章的难点是复数的引入和复数加、减法的几何意义.
课标要求
(1)在问题情境中了解数系的扩充过程,体会实际需求与数学内部矛盾(数的运算规则、方程求根)在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系.
(2)理解复数的基本概念以及复数相等的充要条件.
(3)了解复数的代数表示法及其几何意义.
(4)能进行复数代数形式的四则运算,了解复数代数形式的加、减运算的几何意义.
教学建议
(1)数的概念的发展与数系的扩充是数学发展的一条重要线索.数系扩充的过程体现了数学的发现和创造过程,也体现了数学发生、发展的客观需求.建议教学时详细介绍从自然数系逐步扩充到实数系的过程,使数系的扩充与复数的引入更为自然,让学生充分领略数系扩充过程中所蕴涵的数学思想和科学发展思想.
(2)在讲解复数的相关概念时,在“复数相等”环节,可以类比“相反数”的概念.
(3)学习复数代数形式时的加、减、乘等运算时,可设置研究问题:用第二章“类比推理”思想,将多项式的运算法则与之进行类比.
(4)删减的内容不必再补.对于弱化的部分,建议也只是在其出现的地方作适当延伸,不必重点讲解.
课时分配
本章教学时间大约需5课时,具体分配如下(仅供参考)
3.1 数系的扩充和复数的概念约2课时3.2 复数代数形式的四则运算约2课时第三章 数系的扩充与复数的引入复习课约1课时3.1 数系的扩充和复数的概念
3.1.1 数系的扩充和复数的概念
eq ﹨o(﹨s﹨up7(),﹨s﹨do5(整体设计))
教材分析
教材通过三个环节完成了对实数系的扩充过程:(1)提出问题(用什么方法解决方程x2+1=0在实数集中无解的问题),引发学生的认知冲突,激发学生扩充实数系的欲望;(2)回顾从自然数集逐步扩充到实数集的过程和特点(添加新数,满足原来的运算律);(3)类比、设想扩充实数系的方向及引入新数i所满足的条件(使i2=-1成立,满足原来的运算律).由于学生对数系扩充的知识并不熟悉,教学中教师需多作引导.
复数的概念是复数这一章的基础,复数的有关概念都是围绕复数的代数表示形式展开的.虚数单位、实部、虚部的命名,复数相等的概念,以及虚数、纯虚数等概念的理解,教学中可结合具体例子,以促进对复数实质的理解.
课时分配
1课时.