师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆高中数学教材同步人教A版版选修4-5 不等式选讲3.三个正数的算术-几何平均不等式下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

选修4-5不等式选讲《3.三个正数的算术-几何平均不等式》最新教案优质课下载

3、能够解决一些简单的实际问题.

过程与方法:通过类比学习让学生进一步掌握均值不等式定理,并推广到n个正数,并会用这些定理求某些函数的最值.

情感态度与价值观:

通过学习让学生体会类比学习,培养学生的知识迁移能力;

教学重点:

三个正数均值不等式定理的应用;

教学难点:

解题中的转化技巧.

教学过程:

一、复习回顾:

1.重要不等式:

2.基本不等式及语言表述

3、和的立方公式:

立方和公式:

二、新课:

1.三个正数的算术—几何平均不等式

(1)如果a1,a2,a3∈R+,则叫做这3个正数的算术平均数,叫做这三个正数的几何平均数.

(2)定理3:三个正数基本不等式:≥.当且仅当a1=a2=a3时,等号成立.

语言表述:三个正数的算术平均数不小于它们的几何平均

2.推广:(2)基本不等式:≥(n∈N,ai∈R+,1≤i≤n).当且仅当a1=a2=…=an时等号成立.

语言表述:n个正数的算术平均数不小于它们的几何平均数.

i

上述重要不等式有着广泛的应用,例如: 证明不等式, 求函数最值,判断变量或数学式子的取值范围等等它们涉及到的题目活,变形多,必须把握好凑形技巧今天,我们就来进一步学习均值不等式的应用.

二、课堂精讲

类型1 利用定理3求函数的最值(自主研析)