师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆高中数学教材同步人教A版(2019)必修 第一册全称量词与存在量词下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

高中必修第一册《1.5 全称量词与存在量词》优质课教案教学设计下载

3.能正确地对含有一个量词的命题进行否定.(重点、易混点) 1.通过含量词的命题的否定,培养逻辑推理素养.

2.借助全称量词命题和存在量词命题的应用,提升数学运算素养.

1.全称量词与全称量词命题

(1)短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“?”表示.

(2)含有全称量词的命题叫做全称量词命题,通常将含有变量x的语句用p(x),q(x),r(x),…表示,变量x的取值范围用M表示,那么全称量词命题“对M中任意一个x,p(x)成立”可用符号简记为?x∈M,p(x).

2.存在量词与存在量词命题

(1)短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“?”表示.

(2)含有存在量词的命题,叫做存在量词命题,存在量词命题“存在M中的元素x,使p(x)成立”,可用符号简记为“?x∈M,p(x)”.

思考:“一元二次方程ax2+2x+1=0有实数解”是存在量词命题还是全称量词命题?请改写成相应命题的形式.

提示:是存在量词命题,可改写为“存在x∈R,使ax2+2x+1=0”.

3.含有一个量词的命题的否定﹁

一般地,对于含有一个量词的命题的否定,有下面的结论:

全称量词命题p:?x∈M,p(x),它的否定﹁p:?x∈M,﹁p(x);

存在量词命题p:?x∈M,p(x),它的否定﹁p:?x∈M,﹁p(x).

全称量词命题的否定是存在量词命题,存在量词命题的否定是全称量词命题.

1.下列命题中全称量词命题的个数是(   )

①任意一个自然数都是正整数;

②有的菱形是正方形;

③三角形的内角和是180°.

A.0    B.1    C.2    D.3

[答案] C

2.下列全称量词命题为真命题的是(   )

A.所有的质数是奇数